論文の概要: Multiscale Analysis of Woven Composites Using Hierarchical Physically Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2503.04901v1
- Date: Thu, 06 Mar 2025 19:02:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:48.324728
- Title: Multiscale Analysis of Woven Composites Using Hierarchical Physically Recurrent Neural Networks
- Title(参考訳): 階層的リカレントニューラルネットワークを用いた織物複合材料のマルチスケール解析
- Authors: Ehsan Ghane, Marina A. Maia, Iuri B. C. M. Rocha, Martin Fagerström, Mohsen Mirakhalaf,
- Abstract要約: 織物複合材料のマルチスケール均質化には, 詳細なミクロメカニカル評価が必要である。
本研究では,2段階の代理モデルを用いた階層型物理リカレントニューラルネットワーク(HPRNN)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multiscale homogenization of woven composites requires detailed micromechanical evaluations, leading to high computational costs. Data-driven surrogate models based on neural networks address this challenge but often suffer from big data requirements, limited interpretability, and poor extrapolation capabilities. This study introduces a Hierarchical Physically Recurrent Neural Network (HPRNN) employing two levels of surrogate modeling. First, Physically Recurrent Neural Networks (PRNNs) are trained to capture the nonlinear elasto-plastic behavior of warp and weft yarns using micromechanical data. In a second scale transition, a physics-encoded meso-to-macroscale model integrates these yarn surrogates with the matrix constitutive model, embedding physical properties directly into the latent space. Adopting HPRNNs for both scale transitions can avoid nonphysical behavior often observed in predictions from pure data-driven recurrent neural networks and transformer networks. This results in better generalization under complex cyclic loading conditions. The framework offers a computationally efficient and explainable solution for multiscale modeling of woven composites.
- Abstract(参考訳): 織物のマルチスケール均質化は、詳細なマイクロメカニカル評価を必要とし、高い計算コストをもたらす。
ニューラルネットワークに基づくデータ駆動サロゲートモデルは、この課題に対処するが、多くの場合、ビッグデータ要件、限定的な解釈可能性、低い外挿能力に悩まされる。
本研究では,2段階の代理モデルを用いた階層型物理リカレントニューラルネットワーク(HPRNN)を提案する。
第一に、物理的リカレントニューラルネットワーク(PRNN)は、マイクロメカニカルデータを用いて、ワープおよびウェフト糸の非線形弾塑性挙動を捉えるために訓練される。
第2のスケール遷移では、物理エンコードされたメソ-マクロスケールモデルがこれらの糸を行列構成モデルと統合し、物理特性を直接潜在空間に埋め込む。
両方のスケール遷移にHPRNNを採用することで、純粋なデータ駆動のリカレントニューラルネットワークとトランスフォーマーネットワークからの予測でよく見られる非物理的挙動を回避することができる。
この結果、複素巡回荷重条件下でのより優れた一般化がもたらされる。
このフレームワークは、織物複合物のマルチスケールモデリングのための計算効率が高く説明可能なソリューションを提供する。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
本稿では, 織物のメソスケールシミュレーションの代用として, リカレントニューラルネットワーク(RNN)モデルを提案する。
平均場モデルは、弾塑性挙動を表す包括的データセットを生成する。
シミュレーションでは、任意の6次元ひずみヒストリーを用いて、ランダムウォーキング時の応力を原課題として、循環荷重条件を目標課題として予測する。
論文 参考訳(メタデータ) (2023-11-22T14:47:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A critical look at deep neural network for dynamic system modeling [0.0]
本稿では,入力出力データを用いた動的システムのモデリングにおける(深度)ニューラルネットワークの能力に疑問を呈する。
線形時間不変(LTI)力学系の同定には、2つの代表的なニューラルネットワークモデルを比較する。
LTIシステムでは、LSTMとCFNNはノイズのないケースでも一貫したモデルを提供できない。
論文 参考訳(メタデータ) (2023-01-27T09:03:05Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。