論文の概要: Online Variational Sequential Monte Carlo
- arxiv url: http://arxiv.org/abs/2312.12616v2
- Date: Fri, 2 Feb 2024 16:24:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 19:07:02.752047
- Title: Online Variational Sequential Monte Carlo
- Title(参考訳): オンライン変分逐次モンテカルロ
- Authors: Alessandro Mastrototaro and Jimmy Olsson
- Abstract要約: 我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
- 参考スコア(独自算出の注目度): 56.16884466478886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being the most classical generative model for serial data, state-space models
(SSM) are fundamental in AI and statistical machine learning. In SSM, any form
of parameter learning or latent state inference typically involves the
computation of complex latent-state posteriors. In this work, we build upon the
variational sequential Monte Carlo (VSMC) method, which provides
computationally efficient and accurate model parameter estimation and Bayesian
latent-state inference by combining particle methods and variational inference.
While standard VSMC operates in the offline mode, by re-processing repeatedly a
given batch of data, we distribute the approximation of the gradient of the
VSMC surrogate ELBO in time using stochastic approximation, allowing for online
learning in the presence of streams of data. This results in an algorithm,
online VSMC, that is capable of performing efficiently, entirely on-the-fly,
both parameter estimation and particle proposal adaptation. In addition, we
provide rigorous theoretical results describing the algorithm's convergence
properties as the number of data tends to infinity as well as numerical
illustrations of its excellent convergence properties and usefulness also in
batch-processing settings.
- Abstract(参考訳): シリアルデータの最も古典的な生成モデルであるステートスペースモデル(ssm)は、aiと統計機械学習において基本である。
SSMでは、パラメータ学習や潜在状態推論のあらゆる形態は、一般に複雑な潜在状態の後部の計算を伴う。
本研究では, 粒子法と変分推論を組み合わせることで, 計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する, 変分連続モンテカルロ法(VSMC)を構築した。
標準VSMCはオフラインモードで動作するが、与えられたデータの繰り返し処理により、確率的近似を用いて、VSMCシュロゲートELBOの勾配の近似を時間内に分散し、データのストリームの存在下でオンライン学習を可能にする。
これにより、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することが可能な、オンラインVSMCアルゴリズムが実現される。
さらに,このアルゴリズムの収束特性を,データの個数が無限大になりがちであることを示す厳密な理論結果と,その収束特性とバッチ処理環境における有用性に関する数値イラストを提供する。
関連論文リスト
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series [14.400596021890863]
医療、気候、経済などの現実世界のデータセットは、しばしば不規則な時系列として収集される。
本稿では,連続状態空間モデル (ACSSM) を時系列の連続的動的モデリングに用いるためのアモータイズ制御を提案する。
論文 参考訳(メタデータ) (2024-10-08T01:27:46Z) - Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo [2.6347238599620115]
本稿では,WishartプロセスのためのSMCサンプルについて紹介する。
SMCサンプリングは, 動的共分散の最も頑健な推定と外乱予測をもたらすことを示す。
提案手法が臨床うつ病のデータセットに有効であることを示す。
論文 参考訳(メタデータ) (2024-06-07T09:48:11Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Scalable Stochastic Parametric Verification with Stochastic Variational
Smoothed Model Checking [1.5293427903448025]
平滑モデル検査 (smMC) は, パラメータ空間全体の満足度関数を, 限られた観測値から推定することを目的としている。
本稿では,確率論的機械学習の最近の進歩を利用して,この限界を推し進める。
構成された満足度関数のスケーラビリティ,計算効率,精度を調べた結果,smMCとSV-smMCの性能を比較した。
論文 参考訳(メタデータ) (2022-05-11T10:43:23Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。