論文の概要: Testing the Segment Anything Model on radiology data
- arxiv url: http://arxiv.org/abs/2312.12880v2
- Date: Thu, 16 May 2024 08:06:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 19:14:33.665817
- Title: Testing the Segment Anything Model on radiology data
- Title(参考訳): 放射線学データを用いたセグメンテーションモデルの検討
- Authors: José Guilherme de Almeida, Nuno M. Rodrigues, Sara Silva, Nickolas Papanikolaou,
- Abstract要約: Segment Anything Model (SAM)が最近提案され、画像セグメンテーションのための最初の基礎モデルとなっている。
非常に限られた症例では受け入れられるが、全体的な傾向から、これらのモデルがMRIセグメンテーションに不十分であることがわかる。
自然画像に基づいて訓練された基礎モデルは、予測モデリングの重要な側面となるが、他の画像モダリティで使用すると効果がないことが証明される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models trained with large amounts of data have become a recent and effective approach to predictive problem solving -- these have become known as "foundation models" as they can be used as fundamental tools for other applications. While the paramount examples of image classification (earlier) and large language models (more recently) led the way, the Segment Anything Model (SAM) was recently proposed and stands as the first foundation model for image segmentation, trained on over 10 million images and with recourse to over 1 billion masks. However, the question remains -- what are the limits of this foundation? Given that magnetic resonance imaging (MRI) stands as an important method of diagnosis, we sought to understand whether SAM could be used for a few tasks of zero-shot segmentation using MRI data. Particularly, we wanted to know if selecting masks from the pool of SAM predictions could lead to good segmentations. Here, we provide a critical assessment of the performance of SAM on magnetic resonance imaging data. We show that, while acceptable in a very limited set of cases, the overall trend implies that these models are insufficient for MRI segmentation across the whole volume, but can provide good segmentations in a few, specific slices. More importantly, we note that while foundation models trained on natural images are set to become key aspects of predictive modelling, they may prove ineffective when used on other imaging modalities.
- Abstract(参考訳): 大量のデータで訓練されたディープラーニングモデルは、近年、予測的問題解決のための、効果的なアプローチになりつつある -- これらは、他のアプリケーションの基本ツールとして使用できることから、"境界モデル"として知られるようになった。画像分類(アーリヤ)と大規模言語モデル(最近は)が最重要事例となっているが、Segment Anything Model(SAM)が最近提案され、1000万枚以上の画像で訓練されたイメージセグメンテーションの第一の基盤モデルとして、100億枚以上のマスクでトレーニングされた。しかし、この基盤の限界は?
MRIは診断の重要な方法であり,MRIデータを用いたゼロショットセグメンテーションのいくつかのタスクにSAMが有効であるかどうかを考察した。
特に、SAM予測のプールからマスクを選択することが良いセグメンテーションにつながるかどうかを知りたかった。
本稿では,磁気共鳴画像データにおけるSAMの性能評価について述べる。
非常に限られたケースでは受け入れられるが、全体的な傾向は、これらのモデルが全容にわたってMRIのセグメンテーションに不十分であることを示しているが、いくつかの特定のスライスで良いセグメンテーションを提供できることを示している。
さらに重要なことは、自然画像に基づいて訓練された基礎モデルは、予測モデリングの重要な側面となるように設定されているが、他の画像モダリティで使用すると効果が低下する可能性があることである。
関連論文リスト
- Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - SAM on Medical Images: A Comprehensive Study on Three Prompt Modes [12.42280534113305]
Segment Anything Model(SAM)が最近デビューし、多くの研究者がゼロショットの一般化能力の観点からその可能性と限界を探究した。
本稿では,SAMが医用画像分割タスクの基礎モデルになる可能性について評価する。
また、異なるモダリティを持つ最高のゼロショットパフォーマンスに、どのようなプロンプトが導くかについても検討する。
論文 参考訳(メタデータ) (2023-04-28T18:18:07Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
9つの医用画像セグメンテーションベンチマークにおいて,定量および定性的ゼロショットセグメンテーションの結果を報告する。
本研究は,医用画像における一般視基盤モデルの汎用性を示すものである。
論文 参考訳(メタデータ) (2023-04-25T08:07:59Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
医用画像のセグメンテーションにおけるセグメンテーションモデル(Segment Anything Model)のゼロショット機能の評価を行った。
SAMはCTデータによく対応し,半自動セグメンテーションツールの進歩の触媒となる可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-10T18:20:29Z) - Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot
Segmentation on Whole Slide Imaging [12.533476185972527]
画像セグメンテーションの基礎モデルとしてセグメンテーションモデル(SAM)がリリースされた。
スライド画像全体(WSI)における代表セグメンテーションタスクにおけるSAMモデルのゼロショットセグメンテーション性能を評価する。
その結果,0ショットSAMモデルは大きな連結オブジェクトに対して顕著なセグメンテーション性能を実現することが示唆された。
論文 参考訳(メタデータ) (2023-04-09T04:06:59Z) - Segment Anything [108.16489338211093]
私たちはこれまでで最大のセグメンテーションデータセットを構築し、1100万ライセンスのマスクを10億枚以上使用し、画像のプライバシーを尊重しています。
このモデルは、高速に撮影できるように設計および訓練されており、ゼロショットを新しい画像配信やタスクに転送することができる。
多数のタスクでその能力を評価した結果、ゼロショット性能は印象的であることが判明した。
論文 参考訳(メタデータ) (2023-04-05T17:59:46Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。