論文の概要: Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis
- arxiv url: http://arxiv.org/abs/2312.13234v2
- Date: Tue, 10 Sep 2024 19:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 22:03:32.431672
- Title: Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis
- Title(参考訳): ポジションペーパー: 機械学習と感性分析のギャップを埋める
- Authors: Christian A. Scholbeck, Julia Moosbauer, Giuseppe Casalicchio, Hoshin Gupta, Bernd Bischl, Christian Heumann,
- Abstract要約: 我々は、機械学習モデル(ML)の解釈を感度分析(SA)の一形態と見なすことができると論じている。
我々は、MLにおける説明の統一的なSAベースビューの利点と、関連する作業の完全信用の必要性に注意を払っている。
- 参考スコア(独自算出の注目度): 9.191045750996526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We argue that interpretations of machine learning (ML) models or the model-building process can be seen as a form of sensitivity analysis (SA), a general methodology used to explain complex systems in many fields such as environmental modeling, engineering, or economics. We address both researchers and practitioners, calling attention to the benefits of a unified SA-based view of explanations in ML and the necessity to fully credit related work. We bridge the gap between both fields by formally describing how (a) the ML process is a system suitable for SA, (b) how existing ML interpretation methods relate to this perspective, and (c) how other SA techniques could be applied to ML.
- Abstract(参考訳): 我々は、機械学習(ML)モデルやモデル構築プロセスの解釈を、環境モデリング、工学、経済学など多くの分野において複雑なシステムを説明するのに使用される一般的な手法である感度分析(SA)の一形態と見なすことができると論じる。
我々は、研究者と実践者の両方に対処し、MLにおける説明の統一的なSAベースビューの利点と、関連する作業の完全信用の必要性に注意を払っている。
両フィールド間のギャップを形式的に記述することで橋渡しする
(a)MLプロセスはSAに適したシステムである
(b)既存のML解釈手法がこの観点とどのように関連しているか、そして
(c)他のSA技術がMLにどのように適用できるか。
関連論文リスト
- Naming the Pain in Machine Learning-Enabled Systems Engineering [8.092979562919878]
機械学習(ML)対応システムは、企業によってますます採用されている。
本稿では,ML対応システムの現状を概観する。
論文 参考訳(メタデータ) (2024-05-20T06:59:20Z) - LLMs for XAI: Future Directions for Explaining Explanations [50.87311607612179]
既存のXAIアルゴリズムを用いて計算した説明の精細化に着目する。
最初の実験とユーザスタディは、LLMがXAIの解釈可能性とユーザビリティを高めるための有望な方法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-09T19:17:47Z) - A Guide to Feature Importance Methods for Scientific Inference [10.31256905045161]
特徴重要度(FI)法はデータ生成過程(DGP)に有用な洞察を与える
本稿では,グローバルFI手法の解釈の理解を支援するための包括的ガイドとして機能する。
論文 参考訳(メタデータ) (2024-04-19T13:01:59Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Understanding the Complexity and Its Impact on Testing in ML-Enabled
Systems [8.630445165405606]
世界中の企業で広く採用されている産業対話システムであるRasa 3.0について検討する。
私たちのゴールは、このような大規模なML対応システムの複雑さを特徴づけ、テストにおける複雑さの影響を理解することです。
本研究は,ML対応システムにおけるソフトウェア工学の実践的意義を明らかにする。
論文 参考訳(メタデータ) (2023-01-10T08:13:24Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
本稿では,機械学習モデル作成における熟考と規範的選択を概説する8つの設計質問からなる手法を提案する。
本手法は,方法論的透明性を通じた批判的評価を支援するなど,いくつかの利点がある。
本手法は,MLモデルの開発において,ML実践者が選択や仮定を構造化し,正当化する上で有効であると考えている。
論文 参考訳(メタデータ) (2021-05-03T08:47:45Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。