論文の概要: Automatic Curriculum Learning with Gradient Reward Signals
- arxiv url: http://arxiv.org/abs/2312.13565v1
- Date: Thu, 21 Dec 2023 04:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 16:06:28.569302
- Title: Automatic Curriculum Learning with Gradient Reward Signals
- Title(参考訳): グラデーション報酬信号を用いた自動カリキュラム学習
- Authors: Ryan Campbell and Junsang Yoon
- Abstract要約: 学生モデルの勾配標準情報を利用した教師モデルが学習カリキュラムを動的に適応する枠組みを導入する。
本研究は,教師が困難で達成可能な学習シーケンスを作成できる能力に,勾配規範の報奨がどのような影響を及ぼすかを分析し,最終的に生徒のパフォーマンスを向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper investigates the impact of using gradient norm reward signals in
the context of Automatic Curriculum Learning (ACL) for deep reinforcement
learning (DRL). We introduce a framework where the teacher model, utilizing the
gradient norm information of a student model, dynamically adapts the learning
curriculum. This approach is based on the hypothesis that gradient norms can
provide a nuanced and effective measure of learning progress. Our experimental
setup involves several reinforcement learning environments (PointMaze, AntMaze,
and AdroitHandRelocate), to assess the efficacy of our method. We analyze how
gradient norm rewards influence the teacher's ability to craft challenging yet
achievable learning sequences, ultimately enhancing the student's performance.
Our results show that this approach not only accelerates the learning process
but also leads to improved generalization and adaptability in complex tasks.
The findings underscore the potential of gradient norm signals in creating more
efficient and robust ACL systems, opening new avenues for research in
curriculum learning and reinforcement learning.
- Abstract(参考訳): 本稿では,深層強化学習(DRL)におけるACL(Automatic Curriculum Learning)の文脈における勾配ノルム報酬信号の利用の影響について検討する。
本稿では,生徒モデルの勾配ノルム情報を活用した教師モデルが,学習カリキュラムを動的に適応する枠組みを提案する。
このアプローチは、勾配ノルムが学習の進捗のニュアンスと効果的な尺度を提供できるという仮説に基づいている。
提案手法の有効性を評価するために,いくつかの強化学習環境 (pointmaze, antmaze, adroithandrelocate) を用いて実験を行った。
グラデーション規範が教師の挑戦的かつ達成可能な学習順序を習得する能力にどのように影響するかを分析し,最終的に生徒のパフォーマンスを向上させる。
その結果,本手法は学習過程を加速するだけでなく,複雑なタスクの一般化や適応性の向上につながることがわかった。
この結果は、より効率的で堅牢なaclシステム構築における勾配ノルム信号の可能性を強調し、カリキュラム学習と強化学習の研究の新たな道を開いた。
関連論文リスト
- Normalization and effective learning rates in reinforcement learning [52.59508428613934]
正規化層は近年,深層強化学習と連続学習文学においてルネッサンスを経験している。
正規化は、ネットワークパラメータのノルムにおける成長と効果的な学習速度における崩壊の間の等価性という、微妙だが重要な副作用をもたらすことを示す。
そこで本研究では,正規化・プロジェクトと呼ぶ単純な再パラメータ化により,学習率を明示的にする手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:58:01Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Enhancing Q-Learning with Large Language Model Heuristics [0.0]
大規模言語モデル(LLM)は、単純なタスクでゼロショット学習を達成できるが、推論速度の低下と時折幻覚に悩まされる。
我々は,LLMを幻覚として活用し,強化学習のためのQ関数の学習を支援するフレームワークであるtextbfLLM-guided Q-learningを提案する。
論文 参考訳(メタデータ) (2024-05-06T10:42:28Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Assessor-Guided Learning for Continual Environments [17.181933166255448]
本稿では,継続的学習のための評価者指導型学習戦略を提案する。
評価者は、学習過程の方向とペースを制御することにより、基礎学習者の学習過程を案内する。
評価器はメタ学習方式でメタオブジェクトを用いて訓練され、ベース学習者の学習プロセスが促進される。
論文 参考訳(メタデータ) (2023-03-21T06:45:14Z) - On Pathologies in KL-Regularized Reinforcement Learning from Expert
Demonstrations [79.49929463310588]
我々は,KL-正規化強化学習と行動基準ポリシを併用することで,病理訓練のダイナミクスに悩まされることを示した。
非パラメトリックな行動参照ポリシーで治療できることを示す。
論文 参考訳(メタデータ) (2022-12-28T16:29:09Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
異種学習要素を適切に活用した,データ観測と学習スタイル分析に基づく統合フレームワークを提案する。
授業の構造やテキスト,知識は,学生の非逐次学習行動に本質的に整合性があり,モデリングに有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-18T13:18:39Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - The Sample Complexity of Teaching-by-Reinforcement on Q-Learning [40.37954633873304]
本研究は,TDim (Teaching dimension) と称される授業の複雑さを,TDim(Teaching dimension,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim, TDim,TDim,TDim,TDim,TDim,TDim,TDim,TDim)
本稿では,TDimを,環境に対する制御能力の異なる教師によって特徴付ける,強化学習アルゴリズム,Q-ラーニング,TDimの特定のファミリーに焦点をあてる。
TDimの結果は、強化学習に必要なサンプルの最小数を提供し、標準的なPACスタイルのRLサンプルの複雑さと、実演によるサンプルの複雑さとを関連づける。
論文 参考訳(メタデータ) (2020-06-16T17:06:04Z) - Gradient Monitored Reinforcement Learning [0.0]
我々は、強化学習アルゴリズムにおける訓練の強化と評価性能に焦点をあてる。
本稿では,トレーニングプロセス自体からの動的発達とフィードバックに基づいて,ニューラルネットワークの重みパラメータの学習をステアリングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T13:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。