論文の概要: Where Quantum Complexity Helps Classical Complexity
- arxiv url: http://arxiv.org/abs/2312.14075v3
- Date: Sat, 13 Jan 2024 07:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-17 23:58:02.908345
- Title: Where Quantum Complexity Helps Classical Complexity
- Title(参考訳): 量子複雑性が古典的複雑さを
- Authors: Arash Vaezi, Seyed Mohammad Hussein Kazemi, Negin Bagheri Noghrehy,
Seyed Mohsen Kazemi, Ali Movaghar, Mohammad Ghodsi
- Abstract要約: 量子コンピューティングの潜在能力を最大限活用するためには、問題解決戦略の適応が不可欠である。
本稿では,量子コンピューティングによる複雑な古典的計算問題を解くことを目的とした先行研究の集約に焦点をあてる。
- 参考スコア(独自算出の注目度): 2.5751645168025297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientists have demonstrated that quantum computing has presented novel
approaches to address computational challenges, each varying in complexity.
Adapting problem-solving strategies is crucial to harness the full potential of
quantum computing. Nonetheless, there are defined boundaries to the
capabilities of quantum computing. This paper concentrates on aggregating prior
research efforts dedicated to solving intricate classical computational
problems through quantum computing. The objective is to systematically compile
an exhaustive inventory of these solutions and categorize a collection of
demanding problems that await further exploration.
- Abstract(参考訳): 科学者は、量子コンピューティングが計算課題に対処するための新しいアプローチを提示したことを実証している。
量子コンピューティングの潜在能力を最大限活用するためには、問題解決戦略の適応が不可欠である。
それでも、量子コンピューティングの能力には境界が定義されている。
本稿では,量子コンピューティングによる複雑な古典的計算問題を解くための先行研究の集約に着目する。
目的は、これらのソリューションの徹底したインベントリを体系的にコンパイルし、さらなる探索を待つ要求される問題のコレクションを分類することである。
関連論文リスト
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
スーパーポジションや絡み合いのような量子現象を活用する量子コンピューティングは、コンピューティング技術における変革的な力として現れつつある。
本稿では,量子力学の基礎概念と,その計算発展への意義を体系的に検討する。
論文 参考訳(メタデータ) (2024-08-25T21:40:22Z) - Character Complexity: A Novel Measure for Quantum Circuit Analysis [0.0]
本稿では,グループ理論の概念を実用的な量子コンピューティングの課題にブリッジする新しい尺度であるキャラクタ複雑度を紹介する。
キャラクタ複雑性のいくつかの重要な性質を証明し、量子回路の古典的シミュラビリティへの驚くべき接続を確立する。
本稿では、量子回路の構造に関する直感的な洞察を提供する、文字複雑性の革新的な可視化手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T01:58:54Z) - Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
分散量子コンピューティングは、現在の量子システムの計算能力を高めることを目的としています。
量子通信プロトコルから絡み合いに基づく分散アルゴリズムに至るまで、それぞれの側面は分散量子コンピューティングのモザイクに寄与する。
我々の目的は、経験豊富な研究者やフィールド新参者に対して、徹底的な概要を提供することである。
論文 参考訳(メタデータ) (2024-04-01T17:38:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Quantum Computing for Location Determination [6.141741864834815]
位置決定研究に量子アルゴリズムを用いた場合の期待値の例を紹介する。
提案した量子アルゴリズムは、空間と実行時間の両方において、古典的なアルゴリズムバージョンよりも指数関数的に優れた複雑性を持つ。
ソフトウェアとハードウェアの両方の研究課題と、研究者がこのエキサイティングな新しいドメインを探求する機会について論じる。
論文 参考訳(メタデータ) (2021-06-11T15:39:35Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。