論文の概要: Don't Believe Everything You Read: Enhancing Summarization
Interpretability through Automatic Identification of Hallucinations in Large
Language Models
- arxiv url: http://arxiv.org/abs/2312.14346v1
- Date: Fri, 22 Dec 2023 00:31:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:39:04.835872
- Title: Don't Believe Everything You Read: Enhancing Summarization
Interpretability through Automatic Identification of Hallucinations in Large
Language Models
- Title(参考訳): すべてを信じるな - 大言語モデルにおける幻覚の自動識別による要約解釈可能性の向上
- Authors: Priyesh Vakharia, Devavrat Joshi, Meenal Chavan, Dhananjay Sonawane,
Bhrigu Garg, Parsa Mazaheri, Ian Lane
- Abstract要約: 本稿では,幻覚に対するLarge Language Models (LLM) の振る舞いを深く掘り下げる。
異なる種類の幻覚を識別するためのトークンレベルのアプローチを定義し、さらにトークンレベルのタグ付けを活用してLLMの解釈可能性と忠実性を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are adept at text manipulation -- tasks such as
machine translation and text summarization. However, these models can also be
prone to hallucination, which can be detrimental to the faithfulness of any
answers that the model provides. Recent works in combating hallucinations in
LLMs deal with identifying hallucinated sentences and categorizing the
different ways in which models hallucinate. This paper takes a deep dive into
LLM behavior with respect to hallucinations, defines a token-level approach to
identifying different kinds of hallucinations, and further utilizes this
token-level tagging to improve the interpretability and faithfulness of LLMs in
dialogue summarization tasks. Through this, the paper presents a new, enhanced
dataset and a new training paradigm.
- Abstract(参考訳): 大規模言語モデル(LLM)は、機械翻訳やテキスト要約といったタスクのテキスト操作に適しています。
しかし、これらのモデルは幻覚を引き起こす傾向があり、それはモデルが提供する答えの忠実さを損なう可能性がある。
llmにおける幻覚と闘う最近の研究は、幻覚文の同定と、モデルが幻覚を起こす異なる方法の分類を扱う。
本稿では,幻覚に対する LLM の振る舞いを深く掘り下げ,異なる種類の幻覚を識別するためのトークンレベルのアプローチを定義し,さらに,このトークンレベルのタグ付けを用いて対話要約タスクにおける LLM の解釈性と忠実性を改善する。
そこで本稿では,新たな拡張データセットと新たなトレーニングパラダイムを提案する。
関連論文リスト
- MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification [1.3654846342364308]
トークンレベルの幻覚を無視可能なコストで検出する軽量バイナリ分類器であるMetaTokenを紹介する。
統計的解析から,これまでの研究で注目されていたLVLMの幻覚の要因を明らかにした。
提案手法の有効性を示す4種類のLVLMについて検討した。
論文 参考訳(メタデータ) (2024-05-29T15:28:42Z) - The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models [24.11077502209129]
大規模言語モデル(LLM)は自然言語処理(NLP)のランドスケープを、人間のようなテキストを理解して生成する優れた能力で変えてきた。
しかし、これらのモデルは幻覚(幻覚)の傾向があり、実際の現実や入力コンテキストと一致しない。
本稿では,各モデルの幻覚発生傾向を定量的に測定し,比較するオープンイニシアチブである幻覚リーダーボードを紹介する。
論文 参考訳(メタデータ) (2024-04-08T23:16:22Z) - Hallucination Diversity-Aware Active Learning for Text Summarization [46.00645048690819]
LLM(Large Language Models)は、幻覚出力を生成するための妥当性を示す。
幻覚を緩和するための既存の方法は、通常、LLM出力の幻覚を識別し修正するために、人為的なアノテーションを必要とする。
LLM幻覚を緩和する最初のアクティブラーニングフレームワークを提案し,必要な幻覚アノテーションのコストを削減した。
論文 参考訳(メタデータ) (2024-04-02T02:30:27Z) - Hal-Eval: A Universal and Fine-grained Hallucination Evaluation Framework for Large Vision Language Models [35.45859414670449]
我々は,新しいカテゴリーであるイベント幻覚(Event Hallucination)を特徴とする,幻覚の洗練された分類を導入した。
次に,多種多様な幻覚からなる微粒な幻覚データの生成とフィルタリングに高度LLMを利用する。
提案するベンチマークでは,広帯域の幻覚に対処するLVLMの能力を顕著に評価している。
論文 参考訳(メタデータ) (2024-02-24T05:14:52Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
大規模言語モデル(LM)は、しばしば幻覚と呼ばれる事実的誤りを引き起こす傾向にある。
我々は,幻覚の包括的分類を導入し,幻覚が多様な形態で現れることを議論する。
本稿では, 幻覚自動検出のための新しいタスクを提案し, 新たな評価ベンチマークであるFavaBenchを構築した。
論文 参考訳(メタデータ) (2024-01-12T19:02:48Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
大きな言語モデル(LLM)は、人間のようなテキストを書く能力の進歩を続けている。
重要な課題は、事実に見えるが根拠のないコンテンツを生み出すことを幻覚させる傾向にある。
本稿では,LLMにおける幻覚を緩和するために開発された32以上の技術について調査する。
論文 参考訳(メタデータ) (2024-01-02T17:56:30Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
マルチモーダル大規模言語モデル(MLLM)は、自然言語と視覚情報を効率的に統合し、マルチモーダルタスクを処理できることが示されている。
しかし、MLLMは幻覚の基本的な限界に直面しており、誤った情報や偽情報を生成する傾向がある。
本稿では,MLLMにおける幻覚を表現学習の新たな視点から論じる。
論文 参考訳(メタデータ) (2023-12-12T04:05:15Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
LLM(DECENT)の能力を阻害する逆デカップリング法を提案する。
論文 参考訳(メタデータ) (2023-10-30T08:40:16Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。