Non-Denoising Forward-Time Diffusions
- URL: http://arxiv.org/abs/2312.14589v1
- Date: Fri, 22 Dec 2023 10:26:31 GMT
- Title: Non-Denoising Forward-Time Diffusions
- Authors: Stefano Peluchetti
- Abstract summary: We show that the time-reversal argument, common to all denoising diffusion probabilistic modeling proposals, is not necessary.
We obtain diffusion processes targeting the desired data distribution by taking appropriate mixtures of diffusion bridges.
We develop a unifying view of the drift adjustments corresponding to our and to time-reversal approaches.
- Score: 4.831663144935879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scope of this paper is generative modeling through diffusion processes.
An approach falling within this paradigm is the work of Song et al. (2021),
which relies on a time-reversal argument to construct a diffusion process
targeting the desired data distribution. We show that the time-reversal
argument, common to all denoising diffusion probabilistic modeling proposals,
is not necessary. We obtain diffusion processes targeting the desired data
distribution by taking appropriate mixtures of diffusion bridges. The resulting
transport is exact by construction, allows for greater flexibility in choosing
the dynamics of the underlying diffusion, and can be approximated by means of a
neural network via novel training objectives. We develop a unifying view of the
drift adjustments corresponding to our and to time-reversal approaches and make
use of this representation to inspect the inner workings of diffusion-based
generative models. Finally, we leverage on scalable simulation and inference
techniques common in spatial statistics to move beyond fully factorial
distributions in the underlying diffusion dynamics. The methodological advances
contained in this work contribute toward establishing a general framework for
generative modeling based on diffusion processes.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
We propose an approach for efficiently training diffusion models for probabilistic forecasting.
We train a time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models.
Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and flows spring systems.
arXiv Detail & Related papers (2023-06-03T02:46:31Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.