論文の概要: Fluid Simulation on Neural Flow Maps
- arxiv url: http://arxiv.org/abs/2312.14635v1
- Date: Fri, 22 Dec 2023 12:13:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 15:02:52.656100
- Title: Fluid Simulation on Neural Flow Maps
- Title(参考訳): ニューラルフローマップ上の流体シミュレーション
- Authors: Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, and Bo Zhu
- Abstract要約: 本稿では,フローマップの理論に基づく流体シミュレーションにより,暗黙的ニューラル表現の新たなパラダイムをブリッジする新しいシミュレーション手法であるニューラルフローマップを紹介する。
本研究は, 跳躍渦, 衝突渦, 渦再接続, 移動障害物からの渦発生, 密度差など, 様々な困難なシミュレーションシナリオにおいて, 神経流体シミュレーションの有効性を実証する。
- 参考スコア(独自算出の注目度): 23.5602305386658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Neural Flow Maps, a novel simulation method bridging the
emerging paradigm of implicit neural representations with fluid simulation
based on the theory of flow maps, to achieve state-of-the-art simulation of
inviscid fluid phenomena. We devise a novel hybrid neural field representation,
Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a
pyramid of overlapping, multi-resolution, and spatially sparse grids, to
compactly represent long-term spatiotemporal velocity fields at high accuracy.
With this neural velocity buffer in hand, we compute long-term, bidirectional
flow maps and their Jacobians in a mechanistically symmetric manner, to
facilitate drastic accuracy improvement over existing solutions. These
long-range, bidirectional flow maps enable high advection accuracy with low
dissipation, which in turn facilitates high-fidelity incompressible flow
simulations that manifest intricate vortical structures. We demonstrate the
efficacy of our neural fluid simulation in a variety of challenging simulation
scenarios, including leapfrogging vortices, colliding vortices, vortex
reconnections, as well as vortex generation from moving obstacles and density
differences. Our examples show increased performance over existing methods in
terms of energy conservation, visual complexity, adherence to experimental
observations, and preservation of detailed vortical structures.
- Abstract(参考訳): 本稿では,流れ図の理論に基づく流体シミュレーションにより,暗黙的ニューラル表現の新たなパラダイムをブリッジする新しいシミュレーション手法であるニューラル・フロー・マップを導入し,流体現象の最先端のシミュレーションを実現する。
重なり合う,多解像度,空間的にスパースグリッドのピラミッドで小さなニューラルネットワークを融合させ,長期時空間速度場を高精度にコンパクトに表現する,新しいハイブリッドニューラルネットワーク表現(Spatially Sparse Neural Fields, SSNF)を考案する。
このニューラル・ベロシティ・バッファを手元に,長期的な双方向フローマップとそのヤコビアンを機械的に対称的に計算し,既存の解に対する劇的な精度向上を図る。
これらの長距離双方向フローマップは、低い散逸で高いアドベクション精度を実現し、複雑な渦構造を示す高忠実な非圧縮性フローシミュレーションを容易にする。
本研究は, 跳躍渦, 衝突渦, 渦再接続, 移動障害物からの渦発生, 密度差など, 様々な困難なシミュレーションシナリオにおいて, 神経流体シミュレーションの有効性を実証する。
実例では, エネルギー保存, 視覚の複雑さ, 実験観察への順守, 詳細な渦構造保存の観点から, 既存の手法よりも高い性能を示す。
関連論文リスト
- Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Gaussian Interpolation Flows [11.340847429991525]
本研究は,ガウス分極上に構築されたシミュレーションフリー連続正規化流れの健全性について検討する。
我々は,流れ速度場のリプシッツ正則性,流れの存在と特異性,流れマップの連続性を確立する。
また、2次ワッサーシュタイン距離を計量として、これらの流れの震源分布と速度場の摂動の安定性についても検討した。
論文 参考訳(メタデータ) (2023-11-20T00:59:20Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
論文 参考訳(メタデータ) (2022-05-05T13:33:03Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
最小乱流チャネル流の時間的進化を再現するニューラルネットワークの能力を評価することを目的としている。
長期記憶(LSTM)ネットワークとクープマンベースのフレームワーク(KNF)は、最小チャネルフローモードの時間ダイナミクスを予測するために訓練される。
論文 参考訳(メタデータ) (2022-03-02T09:31:03Z) - Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent
Resolution of Particle-Based Liquids [0.6882042556551611]
本稿では,深層ニューラルネットワークを用いたシーンフロー推定に基づく高分解能液体の生成手法を提案する。
本手法は, 低分解能粒子ベース液体シミュレーションのみで, 小型・大規模の細部を推測, 合成する。
論文 参考訳(メタデータ) (2021-06-09T15:36:23Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。