論文の概要: Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2205.02637v1
- Date: Thu, 5 May 2022 13:33:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-06 22:36:43.412569
- Title: Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks
- Title(参考訳): 多スケールグラフニューラルネットワークによる環境流体力学の高速シミュレーションに向けて
- Authors: Mario Lino, Stathi Fotiadis, Anil A. Bharath and Chris Cantwell
- Abstract要約: 我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulators are essential tools in the study of natural
fluid-systems, but their performance often limits application in practice.
Recent machine-learning approaches have demonstrated their ability to
accelerate spatio-temporal predictions, although, with only moderate accuracy
in comparison. Here we introduce MultiScaleGNN, a novel multi-scale graph
neural network model for learning to infer unsteady continuum mechanics in
problems encompassing a range of length scales and complex boundary geometries.
We demonstrate this method on advection problems and incompressible fluid
dynamics, both fundamental phenomena in oceanic and atmospheric processes. Our
results show good extrapolation to new domain geometries and parameters for
long-term temporal simulations. Simulations obtained with MultiScaleGNN are
between two and four orders of magnitude faster than those on which it was
trained.
- Abstract(参考訳): 数値シミュレータは自然流体系の研究において必須のツールであるが、その性能はしばしば応用を制限している。
最近の機械学習のアプローチでは、時空間予測を適度な精度で加速する能力が実証されている。
本稿では,長さスケールと複雑な境界ジオメトリを包含する問題における非定常連続体力学を推測するための,新しい多スケールグラフニューラルネットワークモデルであるmulti-scalegnnを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
以上の結果から,新しい領域ジオメトリとパラメータの長期的時間シミュレーションへの応用が示唆された。
マルチスケールgnnで得られたシミュレーションは、訓練されたシミュレーションよりも2桁から4桁早い。
関連論文リスト
- Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
論文 参考訳(メタデータ) (2024-04-28T14:05:13Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
データ駆動サロゲートモデリングは、高忠実度数値シミュレータの安価な代替手段を提供する。
CNNは偏微分方程式の解を近似するのに強力であるが、CNNが不規則かつ非構造的なシミュレーションメッシュを扱うことは依然として困難である。
グラフ畳み込みネットワーク(GCN)に基づく代理モデルを構築し,多相流と多孔質媒体の輸送過程の時空間解を近似する。
論文 参考訳(メタデータ) (2023-07-10T09:59:35Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks [0.17205106391379021]
非定常力学を学習するためのネットワークマルチスケールニューラルグラフモデルであるMultiScaleGNNを導入する。
提案モデルは,一様対流場から,テスト時間における複素領域上の高次場への一般化と,レイノルズ数の範囲内での長期ナビエ・ストークス解の推算を可能にする。
論文 参考訳(メタデータ) (2021-06-09T08:37:38Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。