VIOLET: Visual Analytics for Explainable Quantum Neural Networks
- URL: http://arxiv.org/abs/2312.15276v1
- Date: Sat, 23 Dec 2023 15:06:43 GMT
- Title: VIOLET: Visual Analytics for Explainable Quantum Neural Networks
- Authors: Shaolun Ruan, Zhiding Liang, Qiang Guan, Paul Griffin, Xiaolin Wen,
Yanna Lin, Yong Wang
- Abstract summary: VIOLET is a novel visual analytics approach to improve the explainability of quantum neural networks.
We develop three visualization views: Ansatz View, Feature View and satellite chart.
We evaluate VIOLET through two case studies and in-depth interviews with 12 domain experts.
- Score: 6.3356849928129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of Quantum Machine Learning, quantum neural
networks (QNN) have experienced great advancement in the past few years,
harnessing the advantages of quantum computing to significantly speed up
classical machine learning tasks. Despite their increasing popularity, the
quantum neural network is quite counter-intuitive and difficult to understand,
due to their unique quantum-specific layers (e.g., data encoding and
measurement) in their architecture. It prevents QNN users and researchers from
effectively understanding its inner workings and exploring the model training
status. To fill the research gap, we propose VIOLET, a novel visual analytics
approach to improve the explainability of quantum neural networks. Guided by
the design requirements distilled from the interviews with domain experts and
the literature survey, we developed three visualization views: the Encoder View
unveils the process of converting classical input data into quantum states, the
Ansatz View reveals the temporal evolution of quantum states in the training
process, and the Feature View displays the features a QNN has learned after the
training process. Two novel visual designs, i.e., satellite chart and augmented
heatmap, are proposed to visually explain the variational parameters and
quantum circuit measurements respectively. We evaluate VIOLET through two case
studies and in-depth interviews with 12 domain experts. The results demonstrate
the effectiveness and usability of VIOLET in helping QNN users and developers
intuitively understand and explore quantum neural networks
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning.
This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics.
arXiv Detail & Related papers (2024-09-04T08:49:57Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Deep Quantum Graph Dreaming: Deciphering Neural Network Insights into
Quantum Experiments [0.5242869847419834]
We use a technique called $inception$ or $deep$ $dreaming$ to explore what neural networks learn about quantum optics experiments.
Our story begins by training deep neural networks on the properties of quantum systems.
We find that the network can shift the initial distribution of properties of the quantum system, and we can conceptualize the learned strategies of the neural network.
arXiv Detail & Related papers (2023-09-13T16:13:54Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - The power of quantum neural networks [3.327474729829121]
In the near-term, however, the benefits of quantum machine learning are not so clear.
We use tools from information geometry to define a notion of expressibility for quantum and classical models.
We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks.
arXiv Detail & Related papers (2020-10-30T18:13:32Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.