TMAP: A Threat Modeling and Attack Path Analysis Framework for Industrial IoT Systems (A Case Study of IoM and IoP)
- URL: http://arxiv.org/abs/2312.15319v1
- Date: Sat, 23 Dec 2023 18:32:53 GMT
- Title: TMAP: A Threat Modeling and Attack Path Analysis Framework for Industrial IoT Systems (A Case Study of IoM and IoP)
- Authors: Kumar Saurabh, Deepak Gajjala, Krishna Kaipa, Ranjana Vyas, O. P. Vyas, Rahamatullah Khondoker,
- Abstract summary: To deploy secure Industrial Control and Production Systems (ICPS) in smart factories, cyber threats and risks must be addressed.
Current approaches for threat modeling in cyber-physical systems (CPS) are ad hoc and inefficient.
This paper proposes a novel quantitative threat modeling approach, aiming to identify probable attack vectors, assess the path of attacks, and evaluate the magnitude of each vector.
- Score: 2.9922995594704984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrial cyber-physical systems (ICPS) are gradually integrating information technology and automating industrial processes, leading systems to become more vulnerable to malicious actors. Thus, to deploy secure Industrial Control and Production Systems (ICPS) in smart factories, cyber threats and risks must be addressed. To identify all possible threats, Threat Modeling is a promising solution. Despite the existence of numerous methodological solutions for threat modeling in cyber-physical systems (CPS), current approaches are ad hoc and inefficient in providing clear insights to researchers and organizations involved in IIoT technologies. These approaches lack a comprehensive analysis of cyber threats and fail to facilitate effective path analysis across the ICPS lifecycle, incorporating smart manufacturing technologies and tools. To address these gaps, a novel quantitative threat modeling approach is proposed, aiming to identify probable attack vectors, assess the path of attacks, and evaluate the magnitude of each vector. This paper also explains the execution of the proposed approach with two case studies, namely the industrial manufacturing line, i.e., the Internet of Manufacturing (IoM), and the power and industry, i.e., the Internet of Production (IoP).
Related papers
- Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - AsIf: Asset Interface Analysis of Industrial Automation Devices [1.3216177247621483]
Industrial control systems are increasingly adopting IT solutions, including communication standards and protocols.
As these systems become more decentralized and interconnected, a critical need for enhanced security measures arises.
Threat modeling is traditionally performed in structured brainstorming sessions involving domain and security experts.
We propose a method for the analysis of assets in industrial systems, with special focus on physical threats.
arXiv Detail & Related papers (2024-09-26T07:19:15Z) - Interpretable Cyber Threat Detection for Enterprise Industrial Networks: A Computational Design Science Approach [1.935143126104097]
We use IS computational design science paradigm to develop a two-stage cyber threat detection system for enterprise-level IS.
The first stage generates synthetic industrial network data using a modified generative adversarial network.
The second stage develops a novel bidirectional gated recurrent unit and a modified attention mechanism for effective threat detection.
arXiv Detail & Related papers (2024-09-04T19:54:28Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Analyzing the Attack Surface and Threats of Industrial Internet of Things Devices [4.252049820202961]
The growing connectivity of industrial devices as a result of the Internet of Things is increasing the risks to Industrial Control Systems.
We present a systematic and holistic procedure for analyzing the attack surface and threats of Industrial Internet of Things devices.
arXiv Detail & Related papers (2024-05-25T17:55:23Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
This paper presents ThreatFinderAI, an approach and tool to model AI-related assets, threats, countermeasures, and quantify residual risks.
To evaluate the practicality of the approach, participants were tasked to recreate a threat model developed by cybersecurity experts of an AI-based healthcare platform.
Overall, the solution's usability was well-perceived and effectively supports threat identification and risk discussion.
arXiv Detail & Related papers (2024-03-11T08:40:01Z) - ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents [0.0]
ANALYSE is a machine-learning-based software suite to let learning agents autonomously find attacks in cyber-physical energy systems.
It is designed to find yet unknown attack types and to reproduce many known attack strategies in cyber-physical energy systems from the scientific literature.
arXiv Detail & Related papers (2023-04-21T11:36:18Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
We develop an extension to the MulVAL attack graph generation and analysis framework to incorporate cyberattacks on ML production systems.
Using the proposed extension, security practitioners can apply attack graph analysis methods in environments that include ML components.
arXiv Detail & Related papers (2021-07-05T05:58:11Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Validate and Enable Machine Learning in Industrial AI [47.20869253934116]
Industrial AI promises more efficient future industrial control systems.
The Petuum Optimum system is used as an example to showcase the challenges in making and testing AI models.
arXiv Detail & Related papers (2020-10-30T20:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.