論文の概要: Robust Neural Pruning with Gradient Sampling Optimization for Residual
Neural Networks
- arxiv url: http://arxiv.org/abs/2312.16020v2
- Date: Wed, 24 Jan 2024 19:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 17:28:52.220169
- Title: Robust Neural Pruning with Gradient Sampling Optimization for Residual
Neural Networks
- Title(参考訳): 勾配サンプリング最適化による残留ニューラルネットワークのロバストニューラルプルーニング
- Authors: Juyoung Yun
- Abstract要約: 本研究は, 採粒過程におけるStochGradAdamと同様の勾配サンプリング技術の適用に焦点を当てた。
実験により, 従来の最適化手法と比較して, 勾配サンプリング法により最適化されたモデルの方が, 刈り込み時の精度を保つのに有効であることが判明した。
計算資源の制約のある環境においても,精度を損なうことなく効率の良いニューラルネットワークを構築するための有望な方向性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this study, we explore an innovative approach for neural network
optimization, focusing on the application of gradient sampling techniques,
similar to those in StochGradAdam, during the pruning process. Our primary
objective is to maintain high accuracy levels in pruned models, a critical
challenge in resource-limited scenarios. Our extensive experiments reveal that
models optimized with gradient sampling techniques are more effective at
preserving accuracy during pruning compared to those using traditional
optimization methods. This finding underscores the significance of gradient
sampling in facilitating robust learning and enabling networks to retain
crucial information even after substantial reduction in their complexity. We
validate our approach across various datasets and neural architectures,
demonstrating its broad applicability and effectiveness. The paper also delves
into the theoretical aspects, explaining how gradient sampling techniques
contribute to the robustness of models during pruning. Our results suggest a
promising direction for creating efficient neural networks that do not
compromise on accuracy, even in environments with constrained computational
resources.
- Abstract(参考訳): 本研究では,StochGradAdamのプルーニングプロセスにおける勾配サンプリング手法の適用に着目し,ニューラルネットワーク最適化のための革新的なアプローチを検討する。
我々の主な目的は、資源制限シナリオにおける重要な課題である、刈り取られたモデルにおける高精度のレベルを維持することである。
実験により, 従来の最適化手法と比較して, 勾配サンプリング法により最適化されたモデルの方が, 刈り込み時の精度の維持に有効であることが判明した。
この発見は、厳密な学習を容易にし、ネットワークが複雑さを著しく減らした後でも重要な情報を維持できることにおいて、勾配サンプリングの重要性を強調している。
さまざまなデータセットやニューラルネットワークにまたがるアプローチを検証し、その適用性と有効性を示す。
この論文は、勾配サンプリング技術が刈り込み時のモデルの堅牢性にどのように寄与するかを論じる。
計算資源の制約のある環境においても,精度を損なうことなく効率の良いニューラルネットワークを構築できる可能性が示唆された。
関連論文リスト
- Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - Accelerating Neural Network Training: A Brief Review [0.5825410941577593]
本研究では,ディープニューラルネットワーク(DNN)の学習過程を高速化するための革新的なアプローチについて検討する。
この研究は、グラディエント累積(GA)、自動混合精度(AMP)、ピンメモリ(PM)などの高度な手法を利用する。
論文 参考訳(メタデータ) (2023-12-15T18:43:45Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
我々は,Gumbel-Softmaxテクニックを取り入れた,新しい,かつ簡単なニューラルネットワークプルーニングフレームワークを提案する。
ネットワークパラメータの0.15%しか持たないMNISTデータセット上で、高い精度を維持しながら、例外的な圧縮能力を実証する。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
論文 参考訳(メタデータ) (2023-11-21T11:12:03Z) - Sensitivity-Aware Mixed-Precision Quantization and Width Optimization of Deep Neural Networks Through Cluster-Based Tree-Structured Parzen Estimation [4.748931281307333]
本稿では,個々のニューラルネットワーク層に対して最適なビット幅と層幅を自動的に選択する革新的な探索機構を提案する。
これにより、ディープニューラルネットワークの効率が著しく向上する。
論文 参考訳(メタデータ) (2023-08-12T00:16:51Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
本稿では,ニューラルネットワークの知識盲点を生かして,アルゴリズムの有効性を高めるための興味深い道を探る。
本手法は,半導体ダブル量子ドットシステムにおける任意の量子状態の生成に使用される機械学習アルゴリズムを中心にしている。
ニューラルネットワークが生成した予測を活用することにより、最適化プロセスの導出により、局所最適化を回避できる。
論文 参考訳(メタデータ) (2023-07-27T09:11:53Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。