論文の概要: Sharpening Your Density Fields: Spiking Neuron Aided Fast Geometry Learning
- arxiv url: http://arxiv.org/abs/2412.09881v1
- Date: Fri, 13 Dec 2024 05:51:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:55.955369
- Title: Sharpening Your Density Fields: Spiking Neuron Aided Fast Geometry Learning
- Title(参考訳): 密度場のシャープ化:高速な幾何学学習を支援するニューロンのスパイキング
- Authors: Yi Gu, Zhaorui Wang, Dongjun Ye, Renjing Xu,
- Abstract要約: そこで我々は,手動選択の必要性を排除し,閾値を動的に調整するスパイキングニューロン機構を導入する。
我々は、合成データセットと実世界のデータセットの両方に関する広範な実験を通じて、我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 8.657209169726977
- License:
- Abstract: Neural Radiance Fields (NeRF) have achieved remarkable progress in neural rendering. Extracting geometry from NeRF typically relies on the Marching Cubes algorithm, which uses a hand-crafted threshold to define the level set. However, this threshold-based approach requires laborious and scenario-specific tuning, limiting its practicality for real-world applications. In this work, we seek to enhance the efficiency of this method during the training time. To this end, we introduce a spiking neuron mechanism that dynamically adjusts the threshold, eliminating the need for manual selection. Despite its promise, directly training with the spiking neuron often results in model collapse and noisy outputs. To overcome these challenges, we propose a round-robin strategy that stabilizes the training process and enables the geometry network to achieve a sharper and more precise density distribution with minimal computational overhead. We validate our approach through extensive experiments on both synthetic and real-world datasets. The results show that our method significantly improves the performance of threshold-based techniques, offering a more robust and efficient solution for NeRF geometry extraction.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は、ニューラル・レンダリングにおいて顕著な進歩を遂げた。
NeRFから幾何を抽出するには、手作りの閾値を使ってレベルセットを定義するマーチングキューブアルゴリズムを使うのが一般的である。
しかし、このしきい値に基づくアプローチは、現実のアプリケーションに対する実用性を制限する、退屈でシナリオ固有のチューニングを必要とする。
本研究では,本手法の学習時間の効率化を図る。
そこで我々は,手動選択の必要をなくし,閾値を動的に調整するスパイクニューロン機構を導入する。
その約束にもかかわらず、スパイクニューロンとの直接の訓練は、しばしばモデル崩壊とノイズ出力をもたらす。
これらの課題を克服するために、トレーニングプロセスを安定させ、幾何ネットワークが計算オーバーヘッドを最小限に抑えてよりシャープで高精度な密度分布を実現できるラウンドロビン戦略を提案する。
我々は、合成データセットと実世界のデータセットの両方に関する広範な実験を通じて、我々のアプローチを検証する。
その結果,提案手法はしきい値に基づく手法の性能を著しく向上させ,NeRF幾何抽出のためのより堅牢で効率的な解法を提供することがわかった。
関連論文リスト
- Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
この研究は、勾配サンプリング最適化技術、特にStochGradAdamをニューラルネットワークのプルーニングプロセスに統合するパイオニアとなる。
我々の主な目的は、資源制約のあるシナリオにおいて重要なプルーニングニューラルネットワークモデルの精度を維持するという重要な課題に対処することである。
論文 参考訳(メタデータ) (2023-12-26T12:19:22Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
提案アルゴリズムは、ヘッセンのスペクトル半径を探索することにより、圧縮されたモデルのパラメータを平らな解へ向ける。
以上の結果から, ニューロン圧縮における最先端の結果が向上することが示唆された。
この手法は、異なるニューラルネットワークモデル間で小さな精度で、非常に小さなネットワークを実現することができる。
論文 参考訳(メタデータ) (2021-11-16T15:55:59Z) - Adaptive Learning Rate and Momentum for Training Deep Neural Networks [0.0]
本研究では,非線形共役勾配(CG)フレームワークによる高速トレーニング手法を開発した。
画像分類データセットの実験により,本手法は他の局所解法よりも高速な収束が得られることが示された。
論文 参考訳(メタデータ) (2021-06-22T05:06:56Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Netは、Voxelizationなしで大規模ポイントクラウドを理解するための一般的なディープラーニングフレームワークです。
相関型特徴マイニングと変形性畳み込みに基づく幾何認識モデルを用いた深層畳み込みニューラルネットワークを提案する。
我々のアプローチは精度と効率の点で最先端のアプローチを上回っている。
論文 参考訳(メタデータ) (2020-12-17T08:20:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。