AdaNAS: Adaptively Post-processing with Self-supervised Neural
Architecture Search for Ensemble Rainfall Forecasts
- URL: http://arxiv.org/abs/2312.16046v2
- Date: Sun, 4 Feb 2024 06:43:43 GMT
- Title: AdaNAS: Adaptively Post-processing with Self-supervised Neural
Architecture Search for Ensemble Rainfall Forecasts
- Authors: Yingpeng Wen, Weijiang Yu, Fudan Zheng, Dan Huang, Nong Xiao
- Abstract summary: We propose a self-supervised neural architecture search (NAS) method to perform rainfall forecast post-processing and predict rainfall with high accuracy.
In addition, we design a rainfall-aware search space to significantly improve forecasts for high-rainfall areas.
validation experiments have been performed under the cases of emphNone, emphLight, emphModerate, emphHeavy and emphViolent on a large-scale precipitation benchmark named TIGGE.
- Score: 16.723190233704432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous post-processing studies on rainfall forecasts using numerical
weather prediction (NWP) mainly focus on statistics-based aspects, while
learning-based aspects are rarely investigated. Although some manually-designed
models are proposed to raise accuracy, they are customized networks, which need
to be repeatedly tried and verified, at a huge cost in time and labor.
Therefore, a self-supervised neural architecture search (NAS) method without
significant manual efforts called AdaNAS is proposed in this study to perform
rainfall forecast post-processing and predict rainfall with high accuracy. In
addition, we design a rainfall-aware search space to significantly improve
forecasts for high-rainfall areas. Furthermore, we propose a rainfall-level
regularization function to eliminate the effect of noise data during the
training. Validation experiments have been performed under the cases of
\emph{None}, \emph{Light}, \emph{Moderate}, \emph{Heavy} and \emph{Violent} on
a large-scale precipitation benchmark named TIGGE. Finally, the average
mean-absolute error (MAE) and average root-mean-square error (RMSE) of the
proposed AdaNAS model are 0.98 and 2.04 mm/day, respectively. Additionally, the
proposed AdaNAS model is compared with other neural architecture search methods
and previous studies. Compared results reveal the satisfactory performance and
superiority of the proposed AdaNAS model in terms of precipitation amount
prediction and intensity classification. Concretely, the proposed AdaNAS model
outperformed previous best-performing manual methods with MAE and RMSE
improving by 80.5\% and 80.3\%, respectively.
Related papers
- Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
We explore uncertainty-aware deep learning models for post-processing daily cumulative quantitative precipitation forecasts.
Our study compares different state-of-the-art models, and we propose a variant of the well-known SDE-Net.
Our results show that all deep learning models significantly outperform the average baseline NWP solution.
arXiv Detail & Related papers (2024-08-28T16:31:40Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
arXiv Detail & Related papers (2023-10-04T09:27:39Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Rainfall-runoff prediction using a Gustafson-Kessel clustering based
Takagi-Sugeno Fuzzy model [0.0]
A rainfall-runoff model predicts surface runoff either using a physically-based approach or using a systems-based approach.
We propose a new rainfall-runoff model developed using Gustafson-Kessel clustering-based TS Fuzzy model.
arXiv Detail & Related papers (2021-08-22T10:02:51Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
We use Recurrent and Convolutional deep neural network structures to address the challenge of precipitation nowcasting.
A total of five models are trained using Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data over the Eastern Contiguous United States (CONUS)
The models were designed to provide forecasts with a lead time of up to 1.5 hours and, by using a feedback loop approach, the ability of the models to extend the forecast time to 4.5 hours was also investigated.
arXiv Detail & Related papers (2021-08-16T02:55:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.