Work fluctuation theorems with initial quantum coherence
- URL: http://arxiv.org/abs/2312.16227v5
- Date: Thu, 23 May 2024 09:56:25 GMT
- Title: Work fluctuation theorems with initial quantum coherence
- Authors: Gianluca Francica, Luca Dell'Anna,
- Abstract summary: Fluctuation theorems are fundamental results in nonequilibrium thermodynamics beyond the linear response regime.
We investigate the role of initial quantum coherence in work fluctuation theorems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluctuation theorems are fundamental results in nonequilibrium thermodynamics beyond the linear response regime. Among these, the paradigmatic Tasaki-Crooks fluctuation theorem relates the statistics of the works done in a forward out-of-equilibrium quantum process and in a corresponding backward one. In particular, the initial states of the two processes are thermal states and thus incoherent in the energy basis. Here, we aim to investigate the role of initial quantum coherence in work fluctuation theorems, by considering a quasiprobability distribution of work. To do this, we formulate and examine the implications of a detailed fluctuation theorem, which reproduces the Tasaki-Crooks fluctuation theorem in the absence of initial quantum coherence.
Related papers
- Operational work fluctuation theorem for open quantum systems [0.0]
We propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol.
Our theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference.
arXiv Detail & Related papers (2024-08-24T01:01:50Z) - Asymptotic Birkhoff-Violation in Operational Theories: Thermodynamic Implications and Information Processing [0.0]
Renowned Birkhoff-von Neumann theorem identifies source of randomness to be the application of reversible operations on the system under study.
Here, we extend this investigation beyond quantum mechanics to a broader class of operational theories described within the framework of general probabilistic theories.
We show that Birkhoff-violation in GPTs can lead to consequences that are atypical to quantum theory.
arXiv Detail & Related papers (2024-06-13T04:38:43Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Class of quasiprobability distributions of work and initial quantum
coherence [0.0]
We study a class of quasiprobability distributions of work, which give an average work equal to the average energy change of the system.
We find a fluctuation theorem involving quantum coherence, from which follows a second law of thermodynamics.
arXiv Detail & Related papers (2021-10-03T10:56:07Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - A quantum fluctuation theorem for any Lindblad master equation [0.0]
We present a general quantum fluctuation theorem for the entropy production of an open quantum system coupled to multiple environments.
The theorem is genuinely quantum, as it can be expressed in terms of conservation of a Hermitian operator.
We show that the fluctuation theorem amounts to a relation between time-reversed dynamics of the global density matrix and a two-time correlation function.
arXiv Detail & Related papers (2021-08-12T19:28:38Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Eigenstate Fluctuation Theorem in the Short and Long Time Regimes [0.0]
We show that the fluctuation theorem holds in both of the long and short-time regimes.
Our results contribute to the understanding of the mechanism that the fluctuation theorem emerges from unitary dynamics of quantum many-body systems.
arXiv Detail & Related papers (2021-02-24T06:04:47Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.