論文の概要: Understanding News Creation Intents: Frame, Dataset, and Method
- arxiv url: http://arxiv.org/abs/2312.16490v1
- Date: Wed, 27 Dec 2023 09:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-12-29 19:16:54.603278
- Title: Understanding News Creation Intents: Frame, Dataset, and Method
- Title(参考訳): ニュース作成インテントを理解する:フレーム,データセット,方法
- Authors: Zhengjia Wang, Danding Wang, Qiang Sheng, Juan Cao, Silong Su, Yifan
Sun, Beizhe Hu, Siyuan Ma
- Abstract要約: ニュース意図とは、ニュース記事の作成の背後にある目的や意図を指す。
我々は、哲学、心理学、認知科学の研究に基づいて、ニュース作成意図を理解するための最初のコンポーネント認識フォーマリズムであるNews INTentを提案する。
- 参考スコア(独自算出の注目度): 21.22991499250969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the disruptive changes in the media economy and the proliferation of
alternative news media outlets, news intent has progressively deviated from
ethical standards that serve the public interest. News intent refers to the
purpose or intention behind the creation of a news article. While the
significance of research on news intent has been widely acknowledged, the
absence of a systematic news intent understanding framework hinders further
exploration of news intent and its downstream applications. To bridge this gap,
we propose News INTent (NINT) frame, the first component-aware formalism for
understanding the news creation intent based on research in philosophy,
psychology, and cognitive science. Within this frame, we define the news intent
identification task and provide a benchmark dataset with fine-grained labels
along with an efficient benchmark method. Experiments demonstrate that NINT is
beneficial in both the intent identification task and downstream tasks that
demand a profound understanding of news. This work marks a foundational step
towards a more systematic exploration of news creation intents.
- Abstract(参考訳): メディア経済のディスラプティブな変化と代替ニュースメディアの拡散に伴い、ニュースの意図は徐々に、大衆の関心に合う倫理的基準から逸脱していった。
ニュース意図とは、ニュース記事の作成の背後にある目的や意図を指す。
ニュースインテントの研究の意義は広く認識されているが、体系的なニュースインテント理解フレームワークの欠如は、ニュースインテントとその下流アプリケーションをさらに探究することを妨げる。
このギャップを埋めるために、我々は、哲学、心理学、認知科学の研究に基づいて、ニュース作成意図を理解するための最初のコンポーネント認識フォーマリズムであるNews INTent(NINT)フレームを提案する。
本枠組みでは,ニュース意図識別タスクを定義し,詳細なラベル付きベンチマークデータセットと効率的なベンチマーク手法を提案する。
実験により、NINTは意図の識別タスクと、ニュースの深い理解を要求する下流タスクの両方に有益であることが示された。
この研究は、より体系的なニュース作成意図の探求に向けた基礎的な一歩である。
関連論文リスト
- Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models [48.2311603411121]
本稿では,創造者の意図を明示的にモデル化することで,現実のマルチモーダルニュース作成をシミュレートする自動化フレームワークを提案する。
DeceptionDecodedは、信頼できる参照記事と一致した12,000のイメージキャプチャペアからなるベンチマークである。
我々は3つの意図中心のタスクに対して、14の最先端ビジョン言語モデル(VLM)の包括的な評価を行う。
論文 参考訳(メタデータ) (2025-05-21T13:14:32Z) - Talking Point based Ideological Discourse Analysis in News Events [62.18747509565779]
本稿では,イデオロギー的談話分析理論をモチベーションとして,実世界の出来事に関するニュース記事を分析する枠組みを提案する。
我々のフレームワークは,話題のトピックとともに,エンティティ,役割,メディアフレーム間の相互作用を捉えた,会話ポイントという関係構造を用いたニュース記事を表現している。
我々は,人間の検証によって補足されたイデオロギーや分派的分類タスクを通じて,これらの視点を自動で生成するフレームワークの能力を評価する。
論文 参考訳(メタデータ) (2025-04-10T02:52:34Z) - Why Misinformation is Created? Detecting them by Integrating Intent Features [25.20744191980224]
ソーシャルメディアのプラットフォームは、多くの情報をより効率的に便利に広めることを可能にする。
彼らは必然的に誤報に満ちており、私たちの日常生活の様々な側面にダメージを与えている。
誤情報検出(MD)は、広く注目を集めている研究トピックである。
論文 参考訳(メタデータ) (2024-07-27T07:30:47Z) - Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) は、極めて低リソースのシナリオにおいて、非正確なニュースを実際のニュースと区別することを目的としている。
ソーシャルメディア上でのフェイクニュースの拡散や有害な影響により、このタスクは注目を集めている。
本稿では,内外からLLMを増強するDual-perspective Knowledge-Guided Fake News Detection (DKFND)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-12T03:15:01Z) - A Multilingual Similarity Dataset for News Article Frame [14.977682986280998]
16,687の新しいラベル付きペアを用いた大規模ラベル付きニュース記事データセットの拡張版を導入する。
本手法は,従来のニュースフレーム分析研究において,フレームクラスを手動で識別する作業を自由化する。
全体としては10言語にまたがって26,555のラベル付きニュース記事ペアで利用可能な、最も広範な言語間ニュース記事類似性データセットを紹介します。
論文 参考訳(メタデータ) (2024-05-22T01:01:04Z) - From Nuisance to News Sense: Augmenting the News with Cross-Document
Evidence and Context [25.870137795858522]
本稿では,複数のニュース記事からの情報を中心的な話題に集め統合するための,新しいセンスメイキングツールと読書インタフェースであるNEWSSENSEを紹介する。
NEWSSENSEは、異なるソースからの関連記事にリンクすることで、ユーザの選択を集中的に根拠づけた記事を強化する。
我々のパイロット研究は、NEWSSENSEがユーザーが重要な情報を識別し、ニュース記事の信頼性を確認し、異なる視点を探索するのに役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-06T21:15:11Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Exploring Fake News Detection with Heterogeneous Social Media Context
Graphs [4.2177790395417745]
フェイクニュースの検出は、社会全体に直接的な影響を与えるため、純粋に学術的な関心を超える研究領域となっている。
本稿では,ニュース記事を取り巻く異質なソーシャルコンテキストグラフを構築し,問題をグラフ分類タスクとして再構築することを提案する。
論文 参考訳(メタデータ) (2022-12-13T13:29:47Z) - Discovering New Intents Using Latent Variables [51.50374666602328]
本稿では,意図の割り当てを潜伏変数として扱う意図を発見するための確率的フレームワークを提案する。
E-step, we conducting intents and explore the intrinsic structure of unlabeled data by the rear of intent assignments。
M段階において、ラベル付きデータの識別を最適化することにより、既知の意図から伝達される事前知識の忘れを緩和する。
論文 参考訳(メタデータ) (2022-10-21T08:29:45Z) - Generalized Intent Discovery: Learning from Open World Dialogue System [34.39483579171543]
Generalized Intent Discovery (GID)は、INDインテント分類器をINDインテントやOODインテントを含むオープンワールドインテントセットに拡張することを目的としている。
異なるアプリケーションシナリオのための3つのパブリックデータセットを構築し、2種類のフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T14:31:53Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Who Blames or Endorses Whom? Entity-to-Entity Directed Sentiment
Extraction in News Text [4.218255132083181]
そこで本稿では,あるニュース資料から政治団体間の有向感情関係を識別する新たなNLPタスクを提案する。
百万件のニュースコーパスから,政治団体の感情関係を手作業でアノテートするニュース文のデータセットを構築した。
本稿は、2016年アメリカ合衆国大統領選挙と新型コロナウイルス(COVID-19)の2つの主要なイベントにおいて、政治団体間の肯定的・否定的な意見を分析することによって、社会科学研究問題に対する提案手法の有用性を実証する。
論文 参考訳(メタデータ) (2021-06-02T09:02:14Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Supporting verification of news articles with automated search for
semantically similar articles [0.0]
偽ニュースを扱うための証拠検索手法を提案する。
学習課題は教師なし機械学習問題として定式化される。
われわれのアプローチは、コンセプトドリフトとは無関係である。
機械学習タスクはテキスト内の仮説とは独立している。
論文 参考訳(メタデータ) (2021-03-29T12:56:59Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - SirenLess: reveal the intention behind news [31.757138364005087]
本稿では,言語的特徴による誤ニュース検出のための視覚解析システムであるSirenLessを紹介する。
このシステムは、ニュースメタデータと言語機能を統合し、ニュース記事の意味構造を明らかにする新しいインタラクティブツールである、記事エクスプローラーを特徴とする。
我々は、SirenLessを用いて、異なるソースから18のニュース記事を分析し、誤ったニュース検出のためのいくつかの有用なパターンを要約する。
論文 参考訳(メタデータ) (2020-01-08T20:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。