$\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor
- URL: http://arxiv.org/abs/2312.16680v4
- Date: Thu, 17 Apr 2025 00:35:42 GMT
- Title: $\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor
- Authors: Yaroslav Balytskyi, Yevgen Kotukh, Gennady Khalimov, Sang-Yoon Chang,
- Abstract summary: We develop a new $mathcalPT$-symmetric approach for mapping $N = 3$ pure qubit states.<n>Our algorithm has the same error rate for the attack on the three-state QKD protocol as the conventional minimum error, maximum confidence, and maximum mutual information strategies.<n>Our work opens new pathways for applying $mathcalPT$ symmetry in quantum communications, computing, and cryptography.
- Score: 0.9599644507730107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: $\mathcal{PT}$-symmetric systems have garnered significant attention due to their unconventional properties. Despite the growing interest, there remains an ongoing debate about whether these systems outperform their Hermitian counterparts in practical applications, and if so, by what metrics this performance should be measured. We developed $\mathcal{PT}$-symmetric approach for mapping $N = 3$ pure qubit states to address this, implemented it using the dilation method, and demonstrated it on a superconducting quantum processor from the IBM Quantum Experience. For the first time, we derived exact expressions for the population of the post-selected $\mathcal{PT}$-symmetric subspace for both $N = 2$ and $N = 3$ states. When applied to the discrimination of $N = 2$ pure states, our algorithm provides an equivalent result to the conventional unambiguous quantum state discrimination. For $N = 3$ states, our approach introduces novel capabilities not available in traditional Hermitian systems, enabling the transformation of an arbitrary set of three pure quantum states into another, at the cost of introducing an inconclusive outcome. Our algorithm has the same error rate for the attack on the three-state QKD protocol as the conventional minimum error, maximum confidence, and maximum mutual information strategies. For post-selected quantum metrology, our results provide precise conditions where $\mathcal{PT}$-symmetric quantum sensors outperform their Hermitian counterparts in terms of information-cost rate. Combined with punctuated unstructured quantum database search, our method significantly reduces the qubit readout requirements at the cost of adding an ancilla, while maintaining the same average number of oracle calls as the original punctuated Grover's algorithm. Our work opens new pathways for applying $\mathcal{PT}$ symmetry in quantum communications, computing, and cryptography.
Related papers
- Optimal Trace Distance and Fidelity Estimations for Pure Quantum States [3.1157817010763136]
In this paper, we develop optimal quantum algorithms that estimate both the trace distance and the (square root) fidelity between pure states to within additive error.
At the heart of our construction is an algorithmic tool for quantum square root amplitude estimation, which generalizes the well-known quantum amplitude estimation.
arXiv Detail & Related papers (2024-08-29T15:59:55Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Quantum state discrimination in a PT-symmetric system [2.6168345242957582]
Nonorthogonal quantum state discrimination (QSD) plays an important role in quantum information and quantum communication.
We experimentally demonstrate QSD in a $mathcalPT$-symmetric system (i.e., $mathcalPT$-symmetric QSD)
We find that at the critical value, $mathcalPT$-symmetric QSD is equivalent to the optimal unambiguous state discrimination in Hermitian systems.
arXiv Detail & Related papers (2022-09-06T13:28:04Z) - Learning quantum symmetries with interactive quantum-classical
variational algorithms [0.0]
A symmetry of a state $vert psi rangle$ is a unitary operator of which $vert psi rangle$ is an eigenvector.
symmetries provide key physical insight into the quantum system.
We develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of $vert psi rangle$.
arXiv Detail & Related papers (2022-06-23T20:41:26Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - $\mathcal{PT}$-Symmetric Quantum Discrimination of Three States [2.011085769303415]
In a regular Hermitian quantum mechanics, the successful discrimination is possible with the probability $p 1$.
In $mathcalPT$-symmetric quantum mechanics a textitsimulated single-measurement quantum state discrimination with the success rate $p$ can be done.
We discuss the relation of our approach with the recent implementation of $mathcalPT$ symmetry on the IBM quantum processor.
arXiv Detail & Related papers (2020-12-29T18:40:32Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Estimation of pure states using three measurement bases [0.0]
We introduce a new method to estimate unknown pure $d$-dimensional quantum states using the probability distributions associated with only three measurement bases.
The viability of the protocol is experimentally demonstrated using two different and complementary high-dimensional quantum information platforms.
arXiv Detail & Related papers (2020-06-05T03:28:51Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.