論文の概要: Classifier-free graph diffusion for molecular property targeting
- arxiv url: http://arxiv.org/abs/2312.17397v2
- Date: Tue, 01 Oct 2024 13:45:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:31:40.783131
- Title: Classifier-free graph diffusion for molecular property targeting
- Title(参考訳): 分子特性ターゲティングのための分類子フリーグラフ拡散
- Authors: Matteo Ninniri, Marco Podda, Davide Bacciu,
- Abstract要約: この研究は、プロパティターゲティング、すなわち、ターゲットの化学的性質に条件付けられた分子を生成するタスクに焦点を当てている。
本稿では,条件情報を直接学習プロセスに注入して動作する分類器フリーなDiGress(FreeGress)を提案する。
提案手法は,DieGressのプロパティターゲティングタスクに対して,平均絶対誤差を最大79%改善することを示す。
- 参考スコア(独自算出の注目度): 14.488714063757278
- License:
- Abstract: This work focuses on the task of property targeting: that is, generating molecules conditioned on target chemical properties to expedite candidate screening for novel drug and materials development. DiGress is a recent diffusion model for molecular graphs whose distinctive feature is allowing property targeting through classifier-based (CB) guidance. While CB guidance may work to generate molecular-like graphs, we hint at the fact that its assumptions apply poorly to the chemical domain. Based on this insight we propose a classifier-free DiGress (FreeGress), which works by directly injecting the conditioning information into the training process. CF guidance is convenient given its less stringent assumptions and since it does not require to train an auxiliary property regressor, thus halving the number of trainable parameters in the model. We empirically show that our model yields up to 79% improvement in Mean Absolute Error with respect to DiGress on property targeting tasks on QM9 and ZINC-250k benchmarks. As an additional contribution, we propose a simple yet powerful approach to improve chemical validity of generated samples, based on the observation that certain chemical properties such as molecular weight correlate with the number of atoms in molecules.
- Abstract(参考訳): 本研究は, 新規医薬品および材料開発のための候補スクリーニングを迅速化するために, 目的の化学的性質に条件付けられた分子を生成するという, プロパティターゲティングの課題に焦点をあてる。
DiGressは分子グラフの最近の拡散モデルであり、その特徴は分類器ベース(CB)誘導による特性ターゲティングを可能にすることである。
CBガイダンスは、分子のようなグラフを生成するのに役立つかもしれないが、その仮定が化学領域にはあまり適用されないという事実を暗示する。
この知見に基づいて、条件情報を直接トレーニングプロセスに注入することで機能する、分類子なしのDiGress(FreeGress)を提案する。
CFガイダンスは、制約の少ない仮定で便利であり、補助的なプロパティ回帰器を訓練する必要がないので、モデルのトレーニング可能なパラメータの数が半減する。
QM9およびZINC-250kベンチマークのプロパティターゲティングタスクにおけるDiGressに対する平均絶対誤差の最大79%の改善が得られたことを実証的に示す。
さらに, 分子量などの化学的性質が分子中の原子数と相関していることから, 生成試料の化学的妥当性を向上させるための, 単純かつ強力な手法を提案する。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Using GNN property predictors as molecule generators [16.34646723046073]
グラフニューラルネットワーク(GNN)は、物質や分子特性を正確に予測する強力なツールとして登場した。
本稿では、これらのニューラルネットワークの可逆性を利用して、所望の電子特性を持つ分子構造を直接生成する。
論文 参考訳(メタデータ) (2024-06-05T13:53:47Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
分子特性予測問題に対する特性認識適応関係ネットワーク(PAR)を提案する。
我々のPARは、既存のグラフベースの分子エンコーダと互換性があり、プロパティ対応分子埋め込みとモデル分子関係グラフを得る能力も備えている。
論文 参考訳(メタデータ) (2021-07-16T16:22:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。