ClST: A Convolutional Transformer Framework for Automatic Modulation
Recognition by Knowledge Distillation
- URL: http://arxiv.org/abs/2312.17446v1
- Date: Fri, 29 Dec 2023 03:01:46 GMT
- Title: ClST: A Convolutional Transformer Framework for Automatic Modulation
Recognition by Knowledge Distillation
- Authors: Dongbin Hou, Lixin Li, Wensheng Lin, Junli Liang, Zhu Han
- Abstract summary: We propose a novel neural network named convolution-linked signal transformer (ClST) and a novel knowledge distillation method named signal knowledge distillation (SKD)
The SKD is a knowledge distillation method to effectively reduce the parameters and complexity of neural networks.
We train two lightweight neural networks using the SKD algorithm, KD-CNN and KD-MobileNet, to meet the demand that neural networks can be used on miniaturized devices.
- Score: 23.068233043023834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of deep learning (DL) in recent years, automatic
modulation recognition (AMR) with DL has achieved high accuracy. However,
insufficient training signal data in complicated channel environments and
large-scale DL models are critical factors that make DL methods difficult to
deploy in practice. Aiming to these problems, we propose a novel neural network
named convolution-linked signal transformer (ClST) and a novel knowledge
distillation method named signal knowledge distillation (SKD). The ClST is
accomplished through three primary modifications: a hierarchy of transformer
containing convolution, a novel attention mechanism named parallel
spatial-channel attention (PSCA) mechanism and a novel convolutional
transformer block named convolution-transformer projection (CTP) to leverage a
convolutional projection. The SKD is a knowledge distillation method to
effectively reduce the parameters and complexity of neural networks. We train
two lightweight neural networks using the SKD algorithm, KD-CNN and
KD-MobileNet, to meet the demand that neural networks can be used on
miniaturized devices. The simulation results demonstrate that the ClST
outperforms advanced neural networks on all datasets. Moreover, both KD-CNN and
KD-MobileNet obtain higher recognition accuracy with less network complexity,
which is very beneficial for the deployment of AMR on miniaturized
communication devices.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and
Energy Extraction of Nuclear Detector Signals [3.307097167756987]
We introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning.
The proposed system achieved 60 ps time resolution and 0.40% energy resolution with online neural network inference at signal to noise ratio (SNR) of 47.4 dB.
arXiv Detail & Related papers (2022-09-02T08:52:21Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
Training spiking neural networks (RNNs) on dedicated neuromorphic hardware is still an open challenge.
We present a simulation framework of differential-architecture arrays based on an accurate and comprehensive Phase-Change Memory (PCM) device model.
We train a spiking RNN whose weights are emulated in the presented simulation framework, using a recently proposed e-prop learning rule.
arXiv Detail & Related papers (2021-08-04T01:24:17Z) - Supervised training of spiking neural networks for robust deployment on
mixed-signal neuromorphic processors [2.6949002029513167]
Mixed-signal analog/digital electronic circuits can emulate spiking neurons and synapses with extremely high energy efficiency.
Mismatch is expressed as differences in effective parameters between identically-configured neurons and synapses.
We present a supervised learning approach that addresses this challenge by maximizing robustness to mismatch and other common sources of noise.
arXiv Detail & Related papers (2021-02-12T09:20:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.