Design Space Exploration of Approximate Computing Techniques with a
Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2312.17525v1
- Date: Fri, 29 Dec 2023 09:10:40 GMT
- Title: Design Space Exploration of Approximate Computing Techniques with a
Reinforcement Learning Approach
- Authors: Sepide Saeedi, Alessandro Savino, Stefano Di Carlo
- Abstract summary: We propose an RL-based strategy to find approximate versions of an application that balance accuracy degradation and power and computation time reduction.
Our experimental results show a good trade-off between accuracy degradation and decreased power and computation time for some benchmarks.
- Score: 49.42371633618761
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Approximate Computing (AxC) techniques have become increasingly popular in
trading off accuracy for performance gains in various applications. Selecting
the best AxC techniques for a given application is challenging. Among proposed
approaches for exploring the design space, Machine Learning approaches such as
Reinforcement Learning (RL) show promising results. In this paper, we proposed
an RL-based multi-objective Design Space Exploration strategy to find the
approximate versions of the application that balance accuracy degradation and
power and computation time reduction. Our experimental results show a good
trade-off between accuracy degradation and decreased power and computation time
for some benchmarks.
Related papers
- Heuristic Algorithm-based Action Masking Reinforcement Learning (HAAM-RL) with Ensemble Inference Method [0.0]
This paper presents a novel reinforcement learning approach called HAAMRL (Heuristic ensemble-based Action Masking Reinforcement Learning)
The proposed approach exhibits superior performance and capability generalization, indicating superior effectiveness in optimizing complex manufacturing processes.
arXiv Detail & Related papers (2024-03-21T03:42:39Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - Data-Driven Evaluation of Training Action Space for Reinforcement
Learning [1.370633147306388]
This paper proposes a Shapley-inspired methodology for training action space categorization and ranking.
To reduce exponential-time shapley computations, the methodology includes a Monte Carlo simulation.
The proposed data-driven methodology is RL to different domains, use cases, and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-08T04:53:43Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
arXiv Detail & Related papers (2021-10-24T11:25:03Z) - Few-shot Quality-Diversity Optimization [50.337225556491774]
Quality-Diversity (QD) optimization has been shown to be effective tools in dealing with deceptive minima and sparse rewards in Reinforcement Learning.
We show that, given examples from a task distribution, information about the paths taken by optimization in parameter space can be leveraged to build a prior population, which when used to initialize QD methods in unseen environments, allows for few-shot adaptation.
Experiments carried in both sparse and dense reward settings using robotic manipulation and navigation benchmarks show that it considerably reduces the number of generations that are required for QD optimization in these environments.
arXiv Detail & Related papers (2021-09-14T17:12:20Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.