論文の概要: Learning to Search in Task and Motion Planning with Streams
- arxiv url: http://arxiv.org/abs/2111.13144v6
- Date: Wed, 23 Aug 2023 11:56:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 19:27:18.771182
- Title: Learning to Search in Task and Motion Planning with Streams
- Title(参考訳): ストリームを用いたタスクおよびモーションプランニングにおける探索学習
- Authors: Mohamed Khodeir and Ben Agro and Florian Shkurti
- Abstract要約: ロボット工学におけるタスク計画問題と動作計画問題は、個別のタスク変数に対するシンボリック計画と、連続状態および動作変数に対する動作最適化を組み合わせたものである。
対象と事実の集合を最優先的に拡張する幾何学的情報に基づく記号プランナを提案する。
ブロックスタッキング操作タスクにおいて,このアルゴリズムを7DOFロボットアームに適用する。
- 参考スコア(独自算出の注目度): 20.003445874753233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task and motion planning problems in robotics combine symbolic planning over
discrete task variables with motion optimization over continuous state and
action variables. Recent works such as PDDLStream have focused on optimistic
planning with an incrementally growing set of objects until a feasible
trajectory is found. However, this set is exhaustively expanded in a
breadth-first manner, regardless of the logical and geometric structure of the
problem at hand, which makes long-horizon reasoning with large numbers of
objects prohibitively time-consuming. To address this issue, we propose a
geometrically informed symbolic planner that expands the set of objects and
facts in a best-first manner, prioritized by a Graph Neural Network that is
learned from prior search computations. We evaluate our approach on a diverse
set of problems and demonstrate an improved ability to plan in difficult
scenarios. We also apply our algorithm on a 7DOF robotic arm in block-stacking
manipulation tasks.
- Abstract(参考訳): ロボットのタスク計画問題と動作計画問題は、離散的なタスク変数上のシンボリック計画と、連続状態とアクション変数に対する動作最適化を組み合わせる。
PDDLStreamのような最近の研究は、実現可能な軌道が見つかるまで、徐々に成長するオブジェクトセットによる楽観的な計画に焦点を当てている。
しかし、この集合は、問題の論理構造や幾何学的構造に関わらず、広く第一に拡張され、多くの物体が長時間消費する長方形の推論となる。
この問題に対処するために,従来の探索計算から学習したグラフニューラルネットワークにより最優先的に対象と事実の集合を拡張できる幾何学的情報を持つ記号プランナを提案する。
我々は,様々な問題に対するアプローチを評価し,困難なシナリオにおける計画能力の向上を実証する。
また,ブロックスタッキング操作タスクにおいて,このアルゴリズムを7DOFロボットアームに適用する。
関連論文リスト
- A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Optimal Integrated Task and Path Planning and Its Application to
Multi-Robot Pickup and Delivery [10.530860023128406]
本稿では,最適なタスクプランナと最適なパスプランナを組み合わせた,汎用的なマルチロボット計画機構を提案する。
統合プランナーは、タスクプランナーとパスプランナーの相互作用を通じて、ロボットに対して最適な衝突のない軌道を生成する。
論文 参考訳(メタデータ) (2024-03-02T17:48:40Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - Sequential Manipulation Planning on Scene Graph [90.28117916077073]
我々は,効率的な逐次タスク計画のための3次元シーングラフ表現であるコンタクトグラフ+(cg+)を考案する。
ゴール設定は、自然にコンタクトグラフに指定され、最適化法を用いて遺伝的アルゴリズムによって作成することができる。
次に、初期接触グラフと目標設定との間のグラフ編集距離(GED)を計算してタスクプランを簡潔化し、ロボット動作に対応するグラフ編集操作を生成する。
論文 参考訳(メタデータ) (2022-07-10T02:01:33Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
オープンスコープの世界モデルを用いた特定のタスクの計画は、計算的に難解である。
本稿では,初期条件,目標条件,タスクの遷移力学構造に関する知識を活用するタスクスコーピングを提案する。
タスクスコーピングは、関連要因やアクションを決して削除せず、その計算複雑性を特徴づけ、特に有用である計画上の問題を特徴づける。
論文 参考訳(メタデータ) (2020-10-17T21:19:25Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z) - Deep Visual Reasoning: Learning to Predict Action Sequences for Task and
Motion Planning from an Initial Scene Image [43.05971157389743]
本稿では,タスク・アンド・モーション・プランニング(TAMP)の動作シーケンスを初期シーン画像から予測する深部畳み込みリカレントニューラルネットワークを提案する。
重要な側面として、我々の手法は、一度に2つのオブジェクトでしか訓練されないにもかかわらず、多数の異なるオブジェクトを持つシーンに一般化する。
論文 参考訳(メタデータ) (2020-06-09T16:52:02Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
本稿では,一連のデモビデオからのみ,サブタスク間の依存関係と遷移を学習するディープラーニングネットワークを提案する。
これらのシンボルは、画像観察から直接学習し、予測できることが示される。
我々は,(1)人間によって実行されるパズル片のブロック積み重ね,(2)物体のピック・アンド・プレイスとキャビネットドアを7-DoFロボットアームで滑らせるロボット操作という,2つの長期水平作業において,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2020-06-08T18:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。