論文の概要: Diffusion Model with Perceptual Loss
- arxiv url: http://arxiv.org/abs/2401.00110v5
- Date: Wed, 6 Mar 2024 20:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 17:17:22.235179
- Title: Diffusion Model with Perceptual Loss
- Title(参考訳): 知覚損失を伴う拡散モデル
- Authors: Shanchuan Lin, Xiao Yang
- Abstract要約: 平均二乗誤差損失で訓練された拡散モデルは非現実的なサンプルを生成する傾向がある。
分類者なし指導の有効性は、暗黙的な知覚誘導の一形態である事からもたらされる。
そこで本研究では,より現実的なサンプルを生成可能な拡散モデルを実現するための,新たな自己知覚的目標を提案する。
- 参考スコア(独自算出の注目度): 4.67483805599143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models trained with mean squared error loss tend to generate
unrealistic samples. Current state-of-the-art models rely on classifier-free
guidance to improve sample quality, yet its surprising effectiveness is not
fully understood. In this paper, we show that the effectiveness of
classifier-free guidance partly originates from it being a form of implicit
perceptual guidance. As a result, we can directly incorporate perceptual loss
in diffusion training to improve sample quality. Since the score matching
objective used in diffusion training strongly resembles the denoising
autoencoder objective used in unsupervised training of perceptual networks, the
diffusion model itself is a perceptual network and can be used to generate
meaningful perceptual loss. We propose a novel self-perceptual objective that
results in diffusion models capable of generating more realistic samples. For
conditional generation, our method only improves sample quality without
entanglement with the conditional input and therefore does not sacrifice sample
diversity. Our method can also improve sample quality for unconditional
generation, which was not possible with classifier-free guidance before.
- Abstract(参考訳): 平均二乗誤差損失で訓練された拡散モデルは非現実的なサンプルを生成する傾向がある。
現在の最先端のモデルは、サンプル品質を改善するために分類器なしのガイダンスに依存しているが、驚くべき有効性は完全には理解されていない。
本稿では,分類者なし指導の有効性は,暗黙的な知覚誘導の一形態である点に起因していることを示す。
その結果, 拡散訓練における知覚損失を直接組み込むことにより, サンプル品質の向上が期待できる。
拡散訓練におけるスコアマッチング対象は、知覚ネットワークの教師なし訓練で使用される雑音化オートエンコーダ目標に強く似ているため、拡散モデル自体が知覚ネットワークであり、有意義な知覚損失を生成するために使用できる。
そこで本研究では,より現実的なサンプルを生成することができる拡散モデルを提案する。
条件付き生成では,条件付き入力と絡み合うことなくサンプル品質を向上できるため,サンプルの多様性を犠牲にしない。
また,非条件生成のためのサンプル品質の改善も可能であり,従来は分類器を使わない指導では不可能であった。
関連論文リスト
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model [22.39558434131574]
拡散モデルに対する既存のデータ帰属法は、典型的にはトレーニングサンプルの寄与を定量化する。
拡散損失の直接的利用は,拡散損失の計算により,そのような貢献を正確に表すことはできない。
本研究の目的は, 予測分布と属性スコアとの直接比較を計測し, トレーニングサンプルの重要性を分析することである。
論文 参考訳(メタデータ) (2024-10-24T10:58:17Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
Control [54.132297393662654]
拡散モデルは、自然画像やタンパク質のような複雑なデータ分布を捉えるのに優れている。
拡散モデルはトレーニングデータセットの分布を表現するために訓練されるが、私たちはしばしば、生成された画像の美的品質など他の特性にもっと関心を持っている。
本稿では,本フレームワークが真に報酬の高い多種多様なサンプルを効率よく生成できることを示す理論的,実証的な証拠を示す。
論文 参考訳(メタデータ) (2024-02-23T08:54:42Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
拡散モデルが画像生成の主流のアプローチとして登場した。
トレーニングの収束が遅く、サンプリングのカラーシフトの問題に悩まされている。
本稿では,これらの障害は,既定のトレーニングパラダイムに固有のバイアスや準最適性に大きく起因していると考えられる。
論文 参考訳(メタデータ) (2023-10-12T16:04:41Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
本稿では, 劣化データのみに基づく生成拡散モデルのための新しいトレーニング手法を提案する。
顔画像と磁気共鳴画像(MRI)の撮影技術について紹介する。
論文 参考訳(メタデータ) (2023-05-22T15:27:20Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Practical Insights of Repairing Model Problems on Image Classification [3.2932371462787513]
ディープラーニングモデルの追加トレーニングは、結果にネガティブな影響をもたらし、初期正のサンプルを負のサンプルに変える(劣化)。
本稿では, 劣化低減手法の比較から得られた影響について述べる。
その結果、実践者は、AIシステムのデータセットの可用性とライフサイクルを継続的に考慮し、より良い方法に気を配るべきであることが示唆された。
論文 参考訳(メタデータ) (2022-05-14T19:28:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。