論文の概要: A Maritime Industry Experience for Vessel Operational Anomaly Detection: Utilizing Deep Learning Augmented with Lightweight Interpretable Models
- arxiv url: http://arxiv.org/abs/2401.00112v2
- Date: Sat, 25 Jan 2025 00:34:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 20:38:00.687215
- Title: A Maritime Industry Experience for Vessel Operational Anomaly Detection: Utilizing Deep Learning Augmented with Lightweight Interpretable Models
- Title(参考訳): 船舶操作異常検出のための海洋産業経験:軽量解釈モデルによる深層学習の利用
- Authors: Mahshid Helali Moghadam, Mateusz Rzymowski, Lukasz Kulas,
- Abstract要約: 本研究は,半教師付き深層学習モデルに軽量な解釈可能なサロゲートモデルを適用した船体動作異常検出手法を示す。
我々は、通常の運用データに基づいて訓練され、実際の異常検出データでテストされた標準および長期記憶(LSTM)オートエンコーダを利用する。
- 参考スコア(独自算出の注目度): 0.19116784879310028
- License:
- Abstract: This study presents an industry experience showcasing a vessel operational anomaly detection approach that utilizes semi-supervised deep learning models augmented with lightweight interpretable surrogate models, applied to an industrial sensorized vessel, called TUCANA. We leverage standard and Long Short-Term Memory (LSTM) autoencoders trained on normal operational data and tested with real anomaly-revealing data. We then provide a projection of the inference results on a lower-dimension data map generated by t-distributed stochastic neighbor embedding (t-SNE), which serves as an unsupervised baseline and shows the distribution of the identified anomalies. We also develop lightweight surrogate models using random forest and decision tree to promote transparency and interpretability for the inference results of the deep learning models and assist the engineer with an agile assessment of the flagged anomalies. The approach is empirically evaluated using real data from TUCANA. The empirical results show higher performance of the LSTM autoencoder -- as the anomaly detection module with effective capturing of temporal dependencies in the data -- and demonstrate the practicality of the lightweight surrogate models in providing helpful interpretability, which leads to higher efficiency for the engineer's decision-making.
- Abstract(参考訳): 本研究は, 産業用センサ付容器であるTUCANAに適用した, 半教師付き深層学習モデルと軽量解釈可能なサロゲートモデルを用いて, 船舶の動作異常検出手法を実証する産業経験を示すものである。
我々は、通常の運用データに基づいて訓練され、実際の異常検出データでテストされた標準および長期記憶(LSTM)オートエンコーダを利用する。
次に, 教師なしベースラインとして機能し, 同定された異常の分布を示す t-distributed stochastic embeddeding (t-SNE) によって生成された低次元データマップ上での推測結果の投影を行う。
また、ランダムフォレストと決定木を用いた軽量サロゲートモデルを開発し、ディープラーニングモデルの推論結果に対する透明性と解釈性を促進し、フラグ付き異常のアジャイル評価を支援する。
この手法は、TUCANAの実際のデータを用いて実験的に評価される。
実験の結果、LSTMオートエンコーダ -- データ内の時間的依存関係を効果的にキャプチャする異常検出モジュールとして -- のパフォーマンスが向上し、優れた解釈性を提供するための軽量サロゲートモデルの実用性を実証し、それによってエンジニアの意思決定の効率が向上した。
関連論文リスト
- Deep evolving semi-supervised anomaly detection [14.027613461156864]
本研究の目的は,連続的半教師付き異常検出(CSAD)のタスクを形式化することである。
本稿では,半教師付きデータを扱うための変分オートエンコーダ(VAE)のベースラインモデルを提案する。
論文 参考訳(メタデータ) (2024-12-01T15:48:37Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16 [0.29998889086656577]
ベンチマークデータセットの比較的小さな変更は、考慮された特定のML手法よりも、モデルパフォーマンスに著しく影響することを示します。
また、不正確なラベル付けの結果、測定されたモデル性能が不確かであることも示す。
論文 参考訳(メタデータ) (2023-05-31T12:03:12Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
表現学習による教師なし異常検出のためのスケーラブルな機械学習システムを構築した。
本稿では,情報理論の観点からVAEを再考し,再構成誤差を用いた理論的基礎を提供する。
ベンチマークデータセットに対するアプローチの競合性能を実証的に示す。
論文 参考訳(メタデータ) (2020-05-05T00:03:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。