論文の概要: Matching of Users and Creators in Two-Sided Markets with Departures
- arxiv url: http://arxiv.org/abs/2401.00313v3
- Date: Sat, 20 Jan 2024 01:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 00:17:31.743463
- Title: Matching of Users and Creators in Two-Sided Markets with Departures
- Title(参考訳): 分割型市場におけるユーザとクリエーターのマッチング
- Authors: Daniel Huttenlocher, Hannah Li, Liang Lyu, Asuman Ozdaglar and James
Siderius
- Abstract要約: 本稿では,ユーザコンテンツマッチングのダイナミクスに着目したコンテントレコメンデーションのモデルを提案する。
クリエーターの離脱を考慮しないユーザ中心の欲求アルゴリズムは、任意に粗悪な総エンゲージメントをもたらす可能性があることを示す。
本稿では,ユーザの好みを軽度に仮定して性能保証を行う2つの実用的なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.6649753747542209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many online platforms of today, including social media sites, are two-sided
markets bridging content creators and users. Most of the existing literature on
platform recommendation algorithms largely focuses on user preferences and
decisions, and does not simultaneously address creator incentives. We propose a
model of content recommendation that explicitly focuses on the dynamics of
user-content matching, with the novel property that both users and creators may
leave the platform permanently if they do not experience sufficient engagement.
In our model, each player decides to participate at each time step based on
utilities derived from the current match: users based on alignment of the
recommended content with their preferences, and creators based on their
audience size. We show that a user-centric greedy algorithm that does not
consider creator departures can result in arbitrarily poor total engagement,
relative to an algorithm that maximizes total engagement while accounting for
two-sided departures. Moreover, in stark contrast to the case where only users
or only creators leave the platform, we prove that with two-sided departures,
approximating maximum total engagement within any constant factor is NP-hard.
We present two practical algorithms, one with performance guarantees under mild
assumptions on user preferences, and another that tends to outperform
algorithms that ignore two-sided departures in practice.
- Abstract(参考訳): ソーシャルメディアサイトを含む今日の多くのオンラインプラットフォームは、コンテンツクリエーターとユーザーを橋渡しする二面市場だ。
プラットフォームレコメンデーションアルゴリズムに関する既存の文献のほとんどは、ユーザの好みと意思決定に重点を置いており、クリエーターのインセンティブを同時に扱うものではない。
コンテンツレコメンデーションのモデルでは,ユーザとクリエーターの双方が十分なエンゲージメントを得られなければ,プラットフォームを永久に離脱できるという新たな性質から,ユーザとコンテンツのマッチングのダイナミクスを明示的に重視する。
私たちのモデルでは、各プレイヤーは、現在のマッチから派生したユーティリティに基づいて各タイムステップに参加することを決定します。
著者の離脱を考慮しないユーザ中心の欲望アルゴリズムは,2面離脱を考慮しながら総エンゲージメントを最大化するアルゴリズムと比較して,任意に総エンゲージメントを低下させる可能性がある。
さらに,ユーザのみ,あるいはクリエーターのみがプラットフォームを離れる場合とは対照的に,任意の定数係数内で最大総エンゲージメントを近似する2面離脱がnpハードであることを証明する。
本稿では,ユーザの好みを軽度に仮定して性能保証を行う2つの実用的なアルゴリズムを提案する。
関連論文リスト
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
調査力の低い純粋に関連性の高い政策は、短期的ユーザの満足度を高めるが、コンテンツプールの長期的豊かさを損なうことを示す。
調査の結果,プラットフォーム上でのユーザの即時満足度と全体のコンテンツ生産との間には,根本的なトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2024-10-31T07:19:22Z) - Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
実験と調査を行うことで,ユーザストラテジゼーションの試行を行う。
参加者の居住時間や「いいね!」の使用など,結果指標間での戦略化の強い証拠を見出す。
この結果から,プラットフォームはアルゴリズムがユーザの行動に与える影響を無視できないことが示唆された。
論文 参考訳(メタデータ) (2024-05-09T07:36:08Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
論文 参考訳(メタデータ) (2024-04-28T21:09:52Z) - Interpolating Item and User Fairness in Multi-Sided Recommendations [13.635310806431198]
我々は、新しいフェアレコメンデーションフレームワーク、問題(FAIR)を紹介します。
本稿では,リアルタイム学習とフェアレコメンデーションを同時に行う低レベルのアルゴリズム形式を提案する。
我々は,プラットフォーム収益を維持する上でのフレームワークと手法の有効性を実証するとともに,アイテムとユーザ双方に望ましい公平性を確保した。
論文 参考訳(メタデータ) (2023-06-12T15:00:58Z) - How Bad is Top-$K$ Recommendation under Competing Content Creators? [43.2268992294178]
我々は,アナーキー価格のレンズによるユーザ福祉保証について検討する。
創造者競争によるユーザ福祉損失のごく一部は、ユーザ決定におけるKドルとランダム性に応じて、常に小さな一定値で上限づけられていることが示される。
論文 参考訳(メタデータ) (2023-02-03T19:37:35Z) - Fast online ranking with fairness of exposure [29.134493256287072]
このアルゴリズムは計算が高速で、ソート演算が支配的であり、メモリ効率が良く、理論的な保証も強いことを示します。
ユーザ側のパフォーマンスを最大化する基本方針と比較して,提案アルゴリズムは,計算オーバーヘッドが無視できるような推奨事項に,露出基準の複雑な公平性を組み込むことができる。
論文 参考訳(メタデータ) (2022-09-13T12:35:36Z) - Modeling Content Creator Incentives on Algorithm-Curated Platforms [76.53541575455978]
本研究では,アルゴリズムの選択が露出ゲームにおける(ナッシュ)平衡の存在と性格にどのように影響するかを検討する。
本研究では、露出ゲームにおける平衡を数値的に見つけるためのツールを提案し、MovieLensとLastFMデータセットの監査結果を示す。
論文 参考訳(メタデータ) (2022-06-27T08:16:59Z) - Incentivizing Combinatorial Bandit Exploration [87.08827496301839]
自己関心のあるユーザに対してレコメンデーションシステムでアクションを推奨するバンディットアルゴリズムを考える。
ユーザーは他のアクションを自由に選択でき、アルゴリズムの推奨に従うためにインセンティブを得る必要がある。
ユーザは悪用を好むが、アルゴリズムは、前のユーザから収集した情報を活用することで、探索にインセンティブを与えることができる。
論文 参考訳(メタデータ) (2022-06-01T13:46:25Z) - On component interactions in two-stage recommender systems [82.38014314502861]
2段階のレコメンデータは、YouTube、LinkedIn、Pinterestなど、多くのオンラインプラットフォームで使用されている。
ランク付け器と評価器の相互作用が全体の性能に大きく影響していることが示される。
特に、Mixture-of-Expertsアプローチを用いて、アイテムプールの異なるサブセットに特化するように、ノミネータを訓練する。
論文 参考訳(メタデータ) (2021-06-28T20:53:23Z) - Maximizing Cumulative User Engagement in Sequential Recommendation: An
Online Optimization Perspective [26.18096797120916]
ユーザエンゲージメントの向上とユーザブラウジングの促進という、潜在的に矛盾する2つの目標をトレードオフするためには、しばしば必要となる。
より長いユーザブラウジング期間と高いユーザエンゲージメントを明示的にトレードオフする,フレキシブルで実用的なフレームワークを提案する。
このアプローチは大規模なEコマースプラットフォームにデプロイされ、累積クリックの7%以上の改善が達成されている。
論文 参考訳(メタデータ) (2020-06-02T09:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。