論文の概要: Algorithmic Content Selection and the Impact of User Disengagement
- arxiv url: http://arxiv.org/abs/2410.13108v2
- Date: Wed, 19 Feb 2025 22:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:25:02.201782
- Title: Algorithmic Content Selection and the Impact of User Disengagement
- Title(参考訳): アルゴリズムによるコンテンツ選択とユーザ・ディエンジメントの影響
- Authors: Emilio Calvano, Nika Haghtalab, Ellen Vitercik, Eric Zhao,
- Abstract要約: デジタルサービスはコンテンツ選択において根本的なトレードオフに直面している。
ユーザーエンゲージメントを維持するという長期的なメリットに対して、ハイリワードコンテンツから得た即時収益をバランスさせなければならない。
- 参考スコア(独自算出の注目度): 19.14804091327051
- License:
- Abstract: Digital services face a fundamental trade-off in content selection: they must balance the immediate revenue gained from high-reward content against the long-term benefits of maintaining user engagement. Traditional multi-armed bandit models assume that users remain perpetually engaged, failing to capture the possibility that users may disengage when dissatisfied, thereby reducing future revenue potential. In this work, we introduce a model for the content selection problem that explicitly accounts for variable user engagement and disengagement. In our framework, content that maximizes immediate reward is not necessarily optimal in terms of fostering sustained user engagement. Our contributions are twofold. First, we develop computational and statistical methods for offline optimization and online learning of content selection policies. For users whose engagement patterns are defined by $k$ distinct levels, we design a dynamic programming algorithm that computes the exact optimal policy in $O(k^2)$ time. Moreover, we derive no-regret learning guarantees for an online learning setting in which the platform serves a series of users with unknown and potentially adversarial engagement patterns. Second, we introduce the concept of modified demand elasticity which captures how small changes in a user's overall satisfaction affect the platform's ability to secure long-term revenue. This notion generalizes classical demand elasticity by incorporating the dynamics of user re-engagement, thereby revealing key insights into the interplay between engagement and revenue. Notably, our analysis uncovers a counterintuitive phenomenon: although higher friction (i.e., a reduced likelihood of re-engagement) typically lowers overall revenue, it can simultaneously lead to higher user engagement under optimal content selection policies.
- Abstract(参考訳): デジタルサービスは、コンテンツ選択において根本的なトレードオフに直面している。彼らは、ハイリワードコンテンツから得た即時収益と、ユーザーエンゲージメントを維持する長期的な利益のバランスを取らなければならない。
従来のマルチアームのバンディットモデルは、ユーザーが永久にエンゲージメントを保ち、不満を抱いた時にユーザーが離脱する可能性を捉えることができず、将来の収益の可能性を減らすことができると仮定している。
本研究では,コンテンツ選択問題に対して,ユーザエンゲージメントと非エンゲージメントを明示的に考慮したモデルを提案する。
我々のフレームワークでは、即時報酬を最大化するコンテンツは、持続的なユーザーエンゲージメントを育むという点で必ずしも最適ではない。
私たちの貢献は2倍です。
まず、オフライン最適化とコンテンツ選択ポリシーのオンライン学習のための計算および統計手法を開発する。
エンゲージメントパターンが$k$の異なるレベルで定義されるユーザに対して、我々は、$O(k^2)$時間で正確な最適ポリシーを計算する動的プログラミングアルゴリズムを設計する。
さらに、プラットフォームが未知の、潜在的に敵対的なエンゲージメントパターンを持つ一連のユーザを対象とするオンライン学習環境において、学習保証を不要とする。
第2に,ユーザの全体的な満足度の変化が,プラットフォームが長期的な収益を確保する能力に与える影響を把握し,需要の弾力性を変えるという概念を導入する。
この概念は、ユーザ再エンゲージメントのダイナミクスを取り入れた古典的な需要弾性を一般化し、エンゲージメントと収益の間の相互作用に関する重要な洞察を明らかにする。
より高い摩擦(つまり再導入の可能性の低下)は概して全体の収益を低下させるが、同時に最適なコンテンツ選択ポリシーの下でユーザーエンゲージメントを高めることができる。
関連論文リスト
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
調査力の低い純粋に関連性の高い政策は、短期的ユーザの満足度を高めるが、コンテンツプールの長期的豊かさを損なうことを示す。
調査の結果,プラットフォーム上でのユーザの即時満足度と全体のコンテンツ生産との間には,根本的なトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2024-10-31T07:19:22Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
論文 参考訳(メタデータ) (2024-04-28T21:09:52Z) - Ad-load Balancing via Off-policy Learning in a Content Marketplace [9.783697404304025]
広告ロードバランシングは、オンライン広告システム、特にソーシャルメディアプラットフォームにおける重要な課題である。
従来のアドロードバランシングのアプローチは静的アロケーションポリシに依存しており、ユーザの好みやコンテキスト要因の変更に適応できない。
本稿では、ログ化された盗聴フィードバックから、政治外の学習と評価を活用するアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:17:07Z) - Online Learning in a Creator Economy [91.55437924091844]
われわれはクリエーター経済を、ユーザー、プラットフォーム、コンテンツクリエーターの3人組ゲームとして研究している。
私たちは、リターンベースの契約とフィーチャーベースの契約の2つのファミリーを分析します。
滑らかな仮定の下では、リターンベースの契約とレコメンデーションポリシーの協調最適化が後悔をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-19T01:58:13Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - How Bad is Top-$K$ Recommendation under Competing Content Creators? [43.2268992294178]
我々は,アナーキー価格のレンズによるユーザ福祉保証について検討する。
創造者競争によるユーザ福祉損失のごく一部は、ユーザ決定におけるKドルとランダム性に応じて、常に小さな一定値で上限づけられていることが示される。
論文 参考訳(メタデータ) (2023-02-03T19:37:35Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Reliable Decision from Multiple Subtasks through Threshold Optimization:
Content Moderation in the Wild [7.176020195419459]
ソーシャルメディアプラットフォームは、コンテンツモデレーションを通じて有害なコンテンツからユーザーを守るのに苦労している。
これらのプラットフォームは最近、大量のユーザー生成コンテンツに毎日対処するために機械学習モデルを活用している。
サードパーティーのコンテンツモデレーションサービスは、未成年者の存在、失礼なジェスチャー、武器など、複数のサブタスクの予測スコアを提供する。
本稿では,複数のサブタスクの最適しきい値を探索し,信頼性の高いモデレーション決定をコスト効率よく行うための,シンプルで効果的なしきい値最適化手法を提案する。
論文 参考訳(メタデータ) (2022-08-16T03:51:43Z) - Online Learning Demands in Max-min Fairness [91.37280766977923]
本稿では,複数のユーザ間の希少リソースの割り当て機構について,効率的で公平で戦略に準拠した方法で記述する。
このメカニズムは複数のラウンドで繰り返され、各ラウンドでユーザの要求が変更される可能性がある。
各ラウンドの最後には、ユーザは受け取ったアロケーションに関するフィードバックを提供し、そのメカニズムが時間の経過とともにユーザの好みを学習することを可能にする。
論文 参考訳(メタデータ) (2020-12-15T22:15:20Z) - Maximizing Cumulative User Engagement in Sequential Recommendation: An
Online Optimization Perspective [26.18096797120916]
ユーザエンゲージメントの向上とユーザブラウジングの促進という、潜在的に矛盾する2つの目標をトレードオフするためには、しばしば必要となる。
より長いユーザブラウジング期間と高いユーザエンゲージメントを明示的にトレードオフする,フレキシブルで実用的なフレームワークを提案する。
このアプローチは大規模なEコマースプラットフォームにデプロイされ、累積クリックの7%以上の改善が達成されている。
論文 参考訳(メタデータ) (2020-06-02T09:02:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。