論文の概要: A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods
- arxiv url: http://arxiv.org/abs/2401.00442v2
- Date: Mon, 13 May 2024 15:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:43:11.855413
- Title: A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods
- Title(参考訳): 魚眼カメラの歪み補正法の概要
- Authors: Jian Xu, De-Wei Han, Kang Li, Jun-Jie Li, Zhao-Yuan Ma,
- Abstract要約: 魚眼カメラはピンホールカメラに比べて大きな歪みに悩まされ、捕獲された物体の歪んだ画像となる。
魚眼カメラの歪みはデジタル画像処理において一般的な問題であり、画像品質を向上させるために効果的な補正技術が必要である。
本稿では,魚眼カメラの歪み補正法について概説する。
- 参考スコア(独自算出の注目度): 15.82236496962726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fisheye camera, with its unique wide field of view and other characteristics, has found extensive applications in various fields. However, the fisheye camera suffers from significant distortion compared to pinhole cameras, resulting in distorted images of captured objects. Fish-eye camera distortion is a common issue in digital image processing, requiring effective correction techniques to enhance image quality. This review provides a comprehensive overview of various methods used for fish-eye camera distortion correction. The article explores the polynomial distortion model, which utilizes polynomial functions to model and correct radial distortions. Additionally, alternative approaches such as panorama mapping, grid mapping, direct methods, and deep learning-based methods are discussed. The review highlights the advantages, limitations, and recent advancements of each method, enabling readers to make informed decisions based on their specific needs.
- Abstract(参考訳): 魚眼カメラは、独特の視野やその他の特徴を持つが、様々な分野で広く応用されている。
しかし、魚眼カメラはピンホールカメラに比べて大きな歪みに悩まされ、捕獲された物体の歪んだ画像となる。
魚眼カメラの歪みはデジタル画像処理において一般的な問題であり、画像品質を向上させるために効果的な補正技術が必要である。
本稿では,魚眼カメラの歪み補正法について概説する。
本稿では、多項式関数を用いて半径歪みをモデル化し補正する多項式歪みモデルについて検討する。
さらに,パノラママッピング,グリッドマッピング,直接手法,深層学習に基づく手法などの代替手法についても論じる。
レビューでは、各手法の利点、限界、そして最近の進歩を強調し、読者がそれぞれのニーズに応じて情報的な意思決定を行えるようにしている。
関連論文リスト
- RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation [88.54817424560056]
局所歪みの度合いと方向を測定する歪みベクトルマップ(DVM)を提案する。
DVMを学習することで、大域的な歪みパターンに頼ることなく、各ピクセルの局所歪みを独立に識別することができる。
事前学習段階では、歪みベクトルマップを予測し、各画素の局所歪み特徴を知覚する。
微調整段階では、魚眼画像修正のための画素単位のフローマップを予測する。
論文 参考訳(メタデータ) (2024-06-27T06:38:56Z) - Curved Diffusion: A Generative Model With Optical Geometry Control [56.24220665691974]
最終シーンの外観に対する異なる光学系の影響は、しばしば見過ごされる。
本研究では,画像レンダリングに使用される特定のレンズとテキスト画像拡散モデルを密接に統合するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-29T13:06:48Z) - How to turn your camera into a perfect pinhole model [0.38233569758620056]
本稿では,画像からの歪みを除去する前処理ステップを含む新しいアプローチを提案する。
本手法は歪みモデルを仮定する必要がなく, 厳しい歪み画像に適用できる。
このモデルは、多くのアルゴリズムとアプリケーションの深刻なアップグレードを可能にします。
論文 参考訳(メタデータ) (2023-09-20T13:54:29Z) - SimFIR: A Simple Framework for Fisheye Image Rectification with
Self-supervised Representation Learning [105.01294305972037]
自己教師型表現学習に基づく魚眼画像修正のためのフレームワークであるSimFIRを紹介する。
まず魚眼画像を複数のパッチに分割し,その表現を視覚変換器で抽出する。
下流修正作業における転送性能が著しく向上し、学習された表現の有効性が検証される。
論文 参考訳(メタデータ) (2023-08-17T15:20:17Z) - Rethinking Generic Camera Models for Deep Single Image Camera
Calibration to Recover Rotation and Fisheye Distortion [8.877834897951578]
本稿では,様々な歪みに対処可能な汎用カメラモデルを提案する。
提案手法は,市販の魚眼カメラで撮影した2つの大規模データセットと画像に対して,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-25T05:58:23Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
広角画像は、基礎となるピンホールカメラモデルに反する歪みを含む。
これらの歪みを補正することを目的とした画像修正は、これらの問題を解決することができる。
本稿では、異なるアプローチで使用されるカメラモデルについて、詳細な説明と議論を行う。
次に,従来の幾何学に基づく画像修正手法と深層学習法の両方について検討する。
論文 参考訳(メタデータ) (2020-10-30T17:28:40Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
より高精度なパラメータを効率良く得る新しい歪み補正手法を提案する。
本研究では, 局所言語関連推定ネットワークを設計し, 順序歪みを学習し, 現実的な歪み分布を近似する。
歪み情報の冗長性を考慮すると,本手法では歪み画像の一部のみを用いて順序方向の歪み推定を行う。
論文 参考訳(メタデータ) (2020-07-21T10:03:42Z) - UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models [8.484676769284578]
本研究では,未修正単眼ビデオから深度,ユークリッド距離,および視覚計測を推定するための,汎用的な規模対応型自己教師パイプラインを提案する。
提案アルゴリズムは,KITTI修正データセットでさらに評価され,最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-07-13T20:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。