論文の概要: A Survey of Personality, Persona, and Profile in Conversational Agents
and Chatbots
- arxiv url: http://arxiv.org/abs/2401.00609v1
- Date: Sun, 31 Dec 2023 23:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 16:46:31.814683
- Title: A Survey of Personality, Persona, and Profile in Conversational Agents
and Chatbots
- Title(参考訳): 会話エージェントとチャットボットにおけるパーソナリティ、パーソナリティ、プロフィールに関する調査
- Authors: Richard Sutcliffe
- Abstract要約: 本稿では、CAで使用されているすべてのパーソナリティスキームと、それらが使用するスキームに基づいてモデルのリストを作成する。
第3に,CAにおけるパーソナリティを具現化する手法を定義し,それを用いた最近のモデルについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a review of personality in neural conversational agents (CAs),
also called chatbots. First, we define Personality, Persona, and Profile. We
explain all personality schemes which have been used in CAs, and list models
under the scheme(s) which they use. Second we describe 21 datasets which have
been developed in recent CA personality research. Third, we define the methods
used to embody personality in a CA, and review recent models using them.
Fourth, we survey some relevant reviews on CAs, personality, and related
topics. Finally, we draw conclusions and identify some research challenges for
this important emerging field.
- Abstract(参考訳): 本稿では、チャットボットとも呼ばれる神経会話エージェント(CA)の個性についてレビューする。
まず、パーソナリティ、ペルソナ、プロファイルを定義します。
本稿では、CAで使用されているすべてのパーソナリティスキームと、それらが使用するスキームに基づいてモデルのリストを作成する。
次に,最近のcaパーソナリティ研究で開発された21のデータセットについて述べる。
第3に,CAにおけるパーソナリティを具現化する手法を定義し,それを用いた最近のモデルについて検討する。
第4に,CAs,パーソナリティ,関連トピックに関するいくつかの関連レビューを調査する。
最後に、我々は結論を導き、この重要な新興分野の研究課題を特定する。
関連論文リスト
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Dynamic Generation of Personalities with Large Language Models [20.07145733116127]
Hypernetworks に基づく動的パーソナリティ生成手法である Dynamic Personality Generation (DPG) を導入する。
GPT-4にビッグファイブ・パーソナリティ理論を組み込んでパーソナリティアセスメント・マシンを形成する。
次に、この人格評価装置を用いて、スクリプトデータ中の対話を評価し、その結果、人格対話データセットを生成する。
論文 参考訳(メタデータ) (2024-04-10T15:17:17Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - InCharacter: Evaluating Personality Fidelity in Role-Playing Agents through Psychological Interviews [57.04431594769461]
本稿では, RPAの性格的忠実度を心理的尺度で評価するための新しい視点を紹介する。
実験には様々な種類の RPA と LLM が含まれ、14の広く使用されている心理学的尺度で32の異なる文字をカバーしている。
InCharacterでは、現在最先端のRPAが人物の人格と高度に一致した個性を示し、80.7%の精度を達成している。
論文 参考訳(メタデータ) (2023-10-27T08:42:18Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
言語モデルにおける知覚的パーソナリティが、言語生成において一貫して現れるかどうかを検討する。
BERT や GPT2 のような言語モデルでは、異なる文脈におけるパーソナライズマーカーの識別と反映が一貫して可能であることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
論文 参考訳(メタデータ) (2022-12-20T14:24:11Z) - My tweets bring all the traits to the yard: Predicting personality and
relational traits in Online Social Networks [4.095574580512599]
本研究は,オンラインソーシャルネットワーク(OSN)における全体像プロファイルの予測モデルを提供することを目的とする。
我々はまずOSNアカウントから幅広い機能を抽出する機能エンジニアリング手法を考案した。
そして,抽出した特徴に基づいて,ユーザの心理的特徴のスコアを予測する機械学習モデルを設計した。
論文 参考訳(メタデータ) (2020-09-22T20:30:56Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。