論文の概要: Inference and Visualization of Community Structure in Attributed Hypergraphs Using Mixed-Membership Stochastic Block Models
- arxiv url: http://arxiv.org/abs/2401.00688v2
- Date: Sun, 04 May 2025 16:33:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:34.902622
- Title: Inference and Visualization of Community Structure in Attributed Hypergraphs Using Mixed-Membership Stochastic Block Models
- Title(参考訳): Mixed-Membership Stochastic Block Model を用いた分布ハイパーグラフのコミュニティ構造の推定と可視化
- Authors: Kazuki Nakajima, Takeaki Uno,
- Abstract要約: 本稿では,ハイパーグラフの混合メンバーシップブロックモデルと次元削減手法を組み合わせたHyperNEOを提案する。
提案手法は,ノードのコミュニティメンバシップを多く保持するノードレイアウトを生成する。
- 参考スコア(独自算出の注目度): 2.8237889121096034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraphs represent complex systems involving interactions among more than two entities and allow the investigation of higher-order structure and dynamics in complex systems. Node attribute data, which often accompanies network data, can enhance the inference of community structure in complex systems. While mixed-membership stochastic block models have been employed to infer community structure in hypergraphs, they complicate the visualization and interpretation of inferred community structure by assuming that nodes may possess soft community memberships. In this study, we propose a framework, HyperNEO, that combines mixed-membership stochastic block models for hypergraphs with dimensionality reduction methods. Our approach generates a node layout that largely preserves the community memberships of nodes. We evaluate our framework on both synthetic and empirical hypergraphs with node attributes. We expect our framework will broaden the investigation and understanding of higher-order community structure in complex systems.
- Abstract(参考訳): ハイパーグラフは、2つ以上のエンティティ間の相互作用を含む複雑なシステムを表し、複雑なシステムにおける高次構造と力学の研究を可能にする。
ノード属性データは、ネットワークデータに付随することが多いが、複雑なシステムにおけるコミュニティ構造の推論を強化することができる。
混合構成確率ブロックモデルを用いてハイパーグラフのコミュニティ構造を推定する一方で、ノードがソフトなコミュニティメンバーシップを持つ可能性があると仮定して、推測されたコミュニティ構造の可視化と解釈を複雑化する。
本研究では,ハイパーグラフの混合構成確率ブロックモデルと次元還元法を組み合わせたHyperNEOを提案する。
提案手法は,ノードのコミュニティメンバシップを多く保持するノードレイアウトを生成する。
ノード属性を持つ合成ハイパーグラフと経験的ハイパーグラフの両方について,本フレームワークの評価を行った。
我々は,複雑なシステムにおける高次コミュニティ構造の調査と理解の拡大を期待する。
関連論文リスト
- Broad Spectrum Structure Discovery in Large-Scale Higher-Order Networks [1.7273380623090848]
本稿では,大規模ハイパーグラフにおいて,メソスケールの広いスペクトルを効率的に表現し,発見する確率モデルについて紹介する。
低ランク表現を用いたクラス間の潜時相互作用による観測ノードの相互作用をモデル化することにより、我々はリッチな構造パターンを抽出する。
提案モデルは,最先端手法によるリンク予測を改善し,多様な実世界のシステムにおける解釈可能な構造を発見する。
論文 参考訳(メタデータ) (2025-05-27T20:34:58Z) - Hierarchical-Graph-Structured Edge Partition Models for Learning Evolving Community Structure [0.9208007322096532]
本稿では,時間的ネットワーク内での潜在コミュニティの進化を捉えるために,新しい動的ネットワークモデルを提案する。
我々のモデルは、推測されたコミュニティ構造が相互に結合し、分割し、相互作用し、複雑なネットワークのダイナミクスを包括的に理解することを可能にする。
論文 参考訳(メタデータ) (2024-11-18T12:48:15Z) - Uncovering the hidden core-periphery structure in hyperbolic networks [0.0]
双曲型ネットワークモデルは、小さな世界性、スケール自由性、高いクラスタリング係数、コミュニティ構造など、基本的で不可欠な特徴を示す。
本稿では,双曲型ネットワークモデルにおける重要な特徴であるコア周辺構造の存在について検討する。
論文 参考訳(メタデータ) (2024-06-28T14:39:21Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
コミュニティ検出は、実際のグラフを分析する上で重要な課題である。
この記事では,この課題に対処する3つの新しい階層型フレームワークを提案する。
ブロックモデルグラフと実生活データセットにおける100以上のモジュールの組み合わせを比較します。
論文 参考訳(メタデータ) (2023-03-21T22:12:53Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs [0.0]
メソスケール構造は 複雑なシステムの抽象化と解析の 不可欠な部分です
それらは、社会的または引用ネットワークにおけるコミュニティ、企業間相互作用における役割、または輸送ネットワークにおける中核周辺構造におけるコミュニティを表現することができる。
我々は,グループ内のノードの最適分割と高次ネットワークの最適ダイナミクスを同時にモデル化するベイズ的アプローチを導出する。
論文 参考訳(メタデータ) (2023-01-16T12:45:33Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Topological Deep Learning: Going Beyond Graph Data [26.325857542512047]
我々は、広く採用されている位相領域を含むよりリッチなデータ構造の上に構築された統一的な深層学習フレームワークを提案する。
具体的には、新しいタイプのトポロジカルドメインであるコンプレックスを導入する。
我々は、主に注意に基づくCCNNに焦点を当てた、メッセージパッシング複合ニューラルネットワーク(CCNN)のクラスを開発する。
論文 参考訳(メタデータ) (2022-06-01T16:21:28Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
多重ネットワークは複雑なグラフ構造であり、エンティティの集合が複数のタイプの関係によって相互に接続される。
マルチプレックスネットワーク上の構造認識表現学習のための,新しい半教師付き手法を提案する。
論文 参考訳(メタデータ) (2021-10-05T13:37:43Z) - A Generative Node-attribute Network Model for Detecting Generalized
Structure [6.151348127802708]
トポロジ情報と属性情報の両方を生成できる原理モデル(GNAN)を提案する。
新しいモデルは、コミュニティ構造だけでなく、ネットワーク内の他の種類の構造も検出できる。
合成と実世界の両方のネットワークの実験は、新しいモデルが他の最先端モデルと競合していることを示している。
論文 参考訳(メタデータ) (2021-06-05T12:07:04Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。