論文の概要: Revisiting Nonlocal Self-Similarity from Continuous Representation
- arxiv url: http://arxiv.org/abs/2401.00708v1
- Date: Mon, 1 Jan 2024 09:25:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 16:07:46.623725
- Title: Revisiting Nonlocal Self-Similarity from Continuous Representation
- Title(参考訳): 連続表現からの非局所的自己相似性の再考
- Authors: Yisi Luo, Xile Zhao, Deyu Meng
- Abstract要約: 非局所的自己相似性(NSS)は、多次元データ処理タスクにうまく適用された重要な前駆体である。
オンメシュグリッドデータとオフメシュグリッドデータの両方に対して,連続表現に基づく新しい非局所法(CRNL)を提案する。
- 参考スコア(独自算出の注目度): 62.06288797179193
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Nonlocal self-similarity (NSS) is an important prior that has been
successfully applied in multi-dimensional data processing tasks, e.g., image
and video recovery. However, existing NSS-based methods are solely suitable for
meshgrid data such as images and videos, but are not suitable for emerging
off-meshgrid data, e.g., point cloud and climate data. In this work, we revisit
the NSS from the continuous representation perspective and propose a novel
Continuous Representation-based NonLocal method (termed as CRNL), which has two
innovative features as compared with classical nonlocal methods. First, based
on the continuous representation, our CRNL unifies the measure of
self-similarity for on-meshgrid and off-meshgrid data and thus is naturally
suitable for both of them. Second, the nonlocal continuous groups can be more
compactly and efficiently represented by the coupled low-rank function
factorization, which simultaneously exploits the similarity within each group
and across different groups, while classical nonlocal methods neglect the
similarity across groups. This elaborately designed coupled mechanism allows
our method to enjoy favorable performance over conventional NSS methods in
terms of both effectiveness and efficiency. Extensive multi-dimensional data
processing experiments on-meshgrid (e.g., image inpainting and image denoising)
and off-meshgrid (e.g., climate data prediction and point cloud recovery)
validate the versatility, effectiveness, and efficiency of our CRNL as compared
with state-of-the-art methods.
- Abstract(参考訳): 非局所的な自己相似性(NSS)は、画像やビデオのリカバリなど、多次元のデータ処理タスクにうまく適用されている重要な先行技術である。
しかし、既存のnssベースの手法は、画像やビデオのようなメッシュグリッドデータのみに適しているが、ポイントクラウドや気候データのような、新興のオフメシュグリッドデータには適していない。
本研究では,NSSを連続表現の観点から再考し,従来の非局所的手法と比較して2つの革新的な特徴を持つ,連続表現に基づく非局所的手法(CRNL)を提案する。
まず、連続表現に基づいて、CRNLはオン・メシュグリッドおよびオフ・メシュグリッドデータの自己相似性の尺度を統一し、両者に自然に適合する。
第二に、非局所連続群は結合された低ランク函数分解によってよりコンパクトかつ効率的に表されることができ、これは各群と異なる群間の類似性を同時に活用する。
この複雑な結合機構により,従来のNAS法よりも効率と効率の両面において良好な性能が得られる。
大規模マルチ次元データ処理実験(画像インペインティングや画像デノージングなど)とオフメシュグリッド(気候データ予測やポイントクラウドリカバリなど)は、最先端手法と比較して、crnlの汎用性、有効性、効率性を検証する。
関連論文リスト
- Efficient Privacy-Preserving KAN Inference Using Homomorphic Encryption [9.0993556073886]
ホモモルフィック暗号化(HE)は、ディープラーニングモデルのプライバシー保護推論を容易にする。
SiLUアクティベーション関数やB-スプライン関数などの非線形要素を組み込んだkanの複雑な構造は、既存のプライバシ保存推論技術が不十分である。
そこで我々は,kansに適した高精度かつ効率的なプライバシ保護型推論手法を提案する。
論文 参考訳(メタデータ) (2024-09-12T04:51:27Z) - Contrastive Learning with Synthetic Positives [11.932323457691945]
近隣住民との対比学習は、最も効率的な自己教師付き学習(SSL)技術の1つであることが証明されている。
本稿では,NCLP(Contrastive Learning with Synthetic Positives)という新しいアプローチを提案する。
NCLPは、無条件拡散モデルによって生成された合成画像を利用して、モデルが多様な正から学ぶのに役立つ追加の正として利用する。
論文 参考訳(メタデータ) (2024-08-30T01:47:43Z) - Interacting Particle Systems on Networks: joint inference of the network
and the interaction kernel [8.535430501710712]
エージェント間の相互作用のルールを決定するネットワークとシステムの重み行列を推論する。
我々は2つのアルゴリズムを使用する: 1つは演算子回帰と呼ばれる新しいアルゴリズムで、最小2乗のデータを交互に更新する。
どちらのアルゴリズムも、識別可能性と適正性を保証するスケーラブルな条件である。
論文 参考訳(メタデータ) (2024-02-13T12:29:38Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
クライアント間の最終分類層の多様性は、FedAvgアルゴリズムの性能を阻害することを示す。
そこで本研究では,最終層のみの分散還元によるモデル修正を提案する。
同様の通信コストや低い通信コストで既存のベンチマークを著しく上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-05T11:56:35Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Stochastic Cluster Embedding [14.485496311015398]
Neighbor Embedding (NE)は、データ項目間のペアの類似性を維持することを目的としている。
Neighbor Embedding (SNE)のようなNEメソッドは、クラスタなどの大規模パターンを隠蔽する可能性がある。
隣り合う埋め込みに基づく新しいクラスタ可視化手法を提案する。
論文 参考訳(メタデータ) (2021-08-18T07:07:28Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
そこで我々は,CutMixに基づく自然拡張拡張戦略であるAttentive CutMixを提案する。
各トレーニングイテレーションにおいて、特徴抽出器から中間注意マップに基づいて最も記述性の高い領域を選択する。
提案手法は単純かつ有効であり,実装が容易であり,ベースラインを大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-03-29T15:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。