Restart uncertainty relation for monitored quantum dynamics
- URL: http://arxiv.org/abs/2401.01307v1
- Date: Tue, 2 Jan 2024 17:35:56 GMT
- Title: Restart uncertainty relation for monitored quantum dynamics
- Authors: Ruoyu Yin, Qingyuan Wang, Sabine Tornow, Eli Barkai
- Abstract summary: We introduce a novel time-energy uncertainty relationship within the context of restarts in monitored quantum dynamics.
This work not only contributes to our understanding of fundamental aspects related to quantum measurements and dynamics, but also offers practical insights for the design of efficient quantum algorithms with mid-circuit measurements.
- Score: 1.167489362272148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel time-energy uncertainty relationship within the context
of restarts in monitored quantum dynamics. Initially, we investigate the
concept of ``first hitting time'' in quantum systems using an IBM quantum
computer and a three-site ring graph as our starting point. Previous studies
have established that the mean recurrence time, which represents the time taken
to return to the initial state, is quantized as an integer multiple of the
sampling time, displaying pointwise discontinuous transitions at resonances.
Our findings demonstrate that, the natural utilization of the restart mechanism
in laboratory experiments, driven by finite data collection time spans, leads
to a broadening effect on the transitions of the mean recurrence time. Our
newly proposed uncertainty relation captures the underlying essence of these
phenomena, by connecting the broadening of the mean hitting time near
resonances, to the intrinsic energies of the quantum system and to the
fluctuations of recurrence time. This work not only contributes to our
understanding of fundamental aspects related to quantum measurements and
dynamics, but also offers practical insights for the design of efficient
quantum algorithms with mid-circuit measurements.
Related papers
- First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States [1.352425155225249]
We investigate a quantum walk on a ring represented by a directed triangle graph with complex edge weights.
The first hitting time statistics are recorded using unitary dynamics interspersed stroboscopically by measurements.
We conclude that, for the IBM quantum computer under study, the first hitting times of monitored quantum walks are resilient to noise.
arXiv Detail & Related papers (2024-02-24T15:59:25Z) - Properties of Fractionally Quantized Recurrence Times for Interacting
Spin Models [0.0]
Recurrence time quantifies the duration required for a physical system to return to its initial state.
In quantum systems with subspace measurements, recurrence times are governed by Anandan-Aharonov phases, yielding fractionally quantized recurrence times.
Here, we establish universal lower and upper bounds for recurrence times in interacting spins.
arXiv Detail & Related papers (2024-01-18T08:59:27Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum estimation of a time dependent perturbation [0.0]
We analyze the estimation of a time dependent perturbation acting on a quantum system.
We combine quantum measurement theory and classical filter theory into a time evolving hybrid quantum and classical trajectory.
arXiv Detail & Related papers (2021-06-06T12:11:39Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Determination of dynamical quantum phase transitions in strongly
correlated many-body systems using Loschmidt cumulants [0.0]
We use Loschmidt cumulants to determine the critical times of interacting quantum systems after a quench.
Our work demonstrates that Loschmidt cumulants are a powerful tool to unravel the far-from-equilibrium dynamics of strongly correlated many-body systems.
arXiv Detail & Related papers (2020-11-27T09:03:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.