論文の概要: A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook
- arxiv url: http://arxiv.org/abs/2401.01454v2
- Date: Tue, 23 Apr 2024 09:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:25:53.148837
- Title: A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook
- Title(参考訳): 自律運転データセットに関する調査:統計,注釈品質,将来展望
- Authors: Mingyu Liu, Ekim Yurtsever, Jonathan Fossaert, Xingcheng Zhou, Walter Zimmer, Yuning Cui, Bare Luka Zagar, Alois C. Knoll,
- Abstract要約: 複数の視点から265個の自律走行データセットを網羅的に検討した。
我々は、新しいデータセットを作成するためのガイドとしても使えるデータセットの影響を評価するための新しい指標を紹介します。
我々は、将来の自動運転データセットの現在の課題と開発動向について論じる。
- 参考スコア(独自算出の注目度): 24.691922611156937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving has rapidly developed and shown promising performance due to recent advances in hardware and deep learning techniques. High-quality datasets are fundamental for developing reliable autonomous driving algorithms. Previous dataset surveys either focused on a limited number or lacked detailed investigation of dataset characteristics. To this end, we present an exhaustive study of 265 autonomous driving datasets from multiple perspectives, including sensor modalities, data size, tasks, and contextual conditions. We introduce a novel metric to evaluate the impact of datasets, which can also be a guide for creating new datasets. Besides, we analyze the annotation processes, existing labeling tools, and the annotation quality of datasets, showing the importance of establishing a standard annotation pipeline. On the other hand, we thoroughly analyze the impact of geographical and adversarial environmental conditions on the performance of autonomous driving systems. Moreover, we exhibit the data distribution of several vital datasets and discuss their pros and cons accordingly. Finally, we discuss the current challenges and the development trend of the future autonomous driving datasets.
- Abstract(参考訳): 自律運転は、ハードウェアとディープラーニング技術の最近の進歩により、急速に発展し、有望な性能を示している。
高品質なデータセットは、信頼性の高い自律運転アルゴリズムの開発に不可欠である。
以前のデータセット調査では、限られた数に集中するか、データセットの特徴に関する詳細な調査が欠如していた。
この目的のために,センサのモーダル性,データサイズ,タスク,コンテキスト条件など,複数の視点から265個の自律走行データセットを総合的に検討した。
データセットの影響を評価するための新しいメトリクスを導入し、新しいデータセットを作成するためのガイドとしても利用できる。
さらに、アノテーションプロセス、既存のラベル付けツール、およびデータセットのアノテーション品質を分析し、標準アノテーションパイプラインを確立することの重要性を示す。
一方,自動走行システムの性能に及ぼす地理的・対角的環境条件の影響を徹底的に分析する。
さらに、いくつかの重要なデータセットのデータ分布を示し、それらの長所と短所について議論する。
最後に、将来の自動運転データセットの現在の課題と開発動向について論じる。
関連論文リスト
- Collaborative Perception Datasets in Autonomous Driving: A Survey [0.0]
この論文は様々なデータセットを体系的に分析し、多様性、センサーの設定、品質、公開可用性、下流タスクへの適用性といった側面に基づいて比較する。
データセット開発におけるプライバシとセキュリティの懸念に対処することの重要性は、データ共有とデータセット生成に関して強調されている。
論文 参考訳(メタデータ) (2024-04-22T09:36:17Z) - D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation [6.890077875318333]
Driver to Evaluationデータセット(D2E)は、自律的な意思決定データセットである。
運転状態、車両状態、環境状況、および人間レビュアーによる評価スコアに関するデータが含まれている。
D2Eは、人間のドライバーファクターから評価結果をカバーする1100以上の対話運転ケースデータを含んでいる。
論文 参考訳(メタデータ) (2024-04-12T21:29:18Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
我々は、自動走行アプリケーションの改善を継続的に行う方法で、生成データ生産を拡大することが証明された最初のモデルであるSubjectDriveを提案する。
本研究では, 多様なデータを生成するために, 多様な外部データソースを活用可能な, 主観制御機構を備えた新しいモデルを開発する。
論文 参考訳(メタデータ) (2024-03-28T14:07:13Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
意思決定は、ハイレベルな自動走行に向けた重要なモジュールの1つである。
データ駆動による意思決定アプローチは、ますます注目を集めています。
本研究では、車両、環境、運転者関連データの最先端データセットを比較した。
論文 参考訳(メタデータ) (2023-06-29T08:42:18Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Perspective, Survey and Trends: Public Driving Datasets and Toolsets for
Autonomous Driving Virtual Test [4.2628421392139]
本論文では,最初に自律走行テストのためのSLR(Systematic Literature Review)アプローチを提案し,2000年から2020年までの既存の公開データセットとツールセットの概要を示す。
SLAベースの調査アプローチを使用して、データセットとツールセットの両方に関する最近の経験的な調査を初めて実施しました。
論文 参考訳(メタデータ) (2021-04-01T06:17:01Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。