Highly Scalable Quantum Router with Frequency-Independent Scattering Spectra
- URL: http://arxiv.org/abs/2401.01518v2
- Date: Thu, 22 Aug 2024 11:09:17 GMT
- Title: Highly Scalable Quantum Router with Frequency-Independent Scattering Spectra
- Authors: Yue Cai, Kang-Jie Ma, Jie Liu, Gang-Feng Guo, Lei Tan, Wu-Ming Liu,
- Abstract summary: We propose an efficient quantum router scheme composed of semi-infinite coupled-resonator waveguide (CRW) and a giant atom.
The single-channel router scheme enables stable output with 100% transfer rate over the entire energy band of the CRW.
We propose a multi-channel router scheme that possesses high stability and universality, while also being capable of performing various functionalities.
- Score: 4.967454704715789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical quantum routers play a crucial role in quantum networks and have been extensively studied in both theory and experiment, leading to significant advancements in their performance. However, these routers impose stringent requirements for achieving desired routing results, as the incident photon frequency must be in strict resonance with one or several specific frequencies. To address this challenge, we propose an efficient quantum router scheme composed of semi-infinite coupled-resonator waveguide (CRW) and a giant atom. The single-channel router scheme enables stable output with 100% transfer rate over the entire energy band of the CRW. Leveraging this intriguing result, we further propose a multi-channel router scheme that possesses high stability and universality, while also being capable of performing various functionalities. The complete physical explanation of the underlying mechanism for this intriguing result is also presented. We hope that quantum router with output results unaffected by the frequency of the incoming information carriers presents a more reliable solution for the implementation of quantum networks.
Related papers
- Quantum switches for single-photon routing and entanglement generation in waveguide-based networks [0.0]
interconnection of quantum nodes holds great promise for scaling up quantum computing units.
We propose leveraging additional qubit degrees of freedom as quantum switches that coherently condition the system dynamics.
We present deterministic protocols for generating entangled states via single-photon routing across the network.
arXiv Detail & Related papers (2025-03-13T11:37:25Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Characterization of Quantum Frequency Processors [0.0]
Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications.
The quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components.
arXiv Detail & Related papers (2023-02-03T02:08:07Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Entanglement Distribution in Multi-Platform Buffered-Router-Assisted
Frequency-Multiplexed Automated Repeater Chains [0.0]
We propose a quantum network architecture based on quantum processing devices based on NV$-$ colour centers.
Long-distance entanglement distribution is enabled by spectrally-multiplexed quantum repeaters based on rare-earth ion-doped crystals and imperfect entangled photon-pair sources.
arXiv Detail & Related papers (2021-06-08T20:25:43Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Optically-Heralded Entanglement of Superconducting Systems in Quantum
Networks [0.0]
We propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation.
This technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.
arXiv Detail & Related papers (2020-12-24T19:00:01Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Microtoroidal resonators enhance long-distance dynamical entanglement
generation in chiral quantum networks [0.0]
Chiral quantum networks provide a promising route for realising quantum information processing and quantum communication.
We harness the directional asymmetry in chirally-coupled single-mode ring resonators to generate entangled state between two atoms.
We report a concurrence of up to 0.969, a huge improvement over the 0.736 which was suggested and analyzed in great detail.
arXiv Detail & Related papers (2019-12-26T15:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.