論文の概要: Using AI/ML to Find and Remediate Enterprise Secrets in Code & Document
Sharing Platforms
- arxiv url: http://arxiv.org/abs/2401.01754v1
- Date: Wed, 3 Jan 2024 14:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-04 13:59:29.061317
- Title: Using AI/ML to Find and Remediate Enterprise Secrets in Code & Document
Sharing Platforms
- Title(参考訳): AI/MLによるコードとドキュメントの共有プラットフォームにおけるエンタープライズシークレットの検索と修正
- Authors: Gregor Kerr, David Algorry, Senad Ibraimoski, Peter Maciver, Sean
Moran
- Abstract要約: 1) AIを活用して、コード内のシークレットを正確に検出し、フラグアップし、人気のあるドキュメント共有プラットフォーム上でフラグアップする。
検出性能に優れた2つのベースラインAIモデルを導入し、コード中のシークレットを更新するための自動メカニズムを提案する。
- 参考スコア(独自算出の注目度): 2.9248916859490173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new challenge to the software development community: 1)
leveraging AI to accurately detect and flag up secrets in code and on popular
document sharing platforms that frequently used by developers, such as
Confluence and 2) automatically remediating the detections (e.g. by suggesting
password vault functionality). This is a challenging, and mostly unaddressed
task. Existing methods leverage heuristics and regular expressions, that can be
very noisy, and therefore increase toil on developers. The next step -
modifying code itself - to automatically remediate a detection, is a complex
task. We introduce two baseline AI models that have good detection performance
and propose an automatic mechanism for remediating secrets found in code,
opening up the study of this task to the wider community.
- Abstract(参考訳): 私たちはソフトウェア開発コミュニティに新しい挑戦を紹介します。
1) confluenceやconfluenceなど,開発者が頻繁に使用しているコードや人気のドキュメント共有プラットフォームにおける機密情報を,aiを使って正確に検出し,警告する。
2) 検出を自動的に更新する(例えばパスワードのデフォルト機能を提案する)。
これは挑戦的で、ほとんど問題のないタスクです。
既存のメソッドはヒューリスティックスと正規表現を活用しており、非常に騒がしいため、開発者への不安が増す。
次のステップ修正 – 検出を自動的に更新する – は,複雑なタスクである。
優れた検出性能を持つ2つのベースラインAIモデルを導入し、コード中のシークレットを更新するための自動メカニズムを提案し、このタスクの研究を広いコミュニティに開放する。
関連論文リスト
- A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
論文 参考訳(メタデータ) (2024-09-05T06:24:29Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - Enhancing Security of AI-Based Code Synthesis with GitHub Copilot via Cheap and Efficient Prompt-Engineering [1.7702475609045947]
開発者や企業がその潜在能力を最大限に活用することを避けている理由の1つは、生成されたコードに対する疑わしいセキュリティである。
本稿ではまず,現状を概観し,今後の課題について述べる。
我々は、GitHub CopilotのようなAIベースのコードジェネレータのコードセキュリティを改善するために、プロンプト変換手法に基づく体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-19T12:13:33Z) - CodeAgent: Autonomous Communicative Agents for Code Review [12.163258651539236]
コードレビュー自動化のための新しいマルチエージェント大規模言語モデル(LLM)システムであるツールを紹介する。
CodeAgentは、すべてのエージェントのコントリビューションが初期レビュー問題に対処するように、監督エージェントであるQA-Checkerを組み込んでいる。
結果はCodeAgentの有効性を実証し、コードレビュー自動化の新たな最先端に寄与している。
論文 参考訳(メタデータ) (2024-02-03T14:43:14Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
我々は,自己修正の連鎖を通じてモジュール化されたコード生成を誘発する,新しい推論フレームワークであるCodeChainを提案する。
CodeChainは、生成したソリューションのモジュール性と正確性の両方を大幅に向上させ、APPSで35%、CodeContestsで76%の相対パス@1の改善を実現しています。
論文 参考訳(メタデータ) (2023-10-13T10:17:48Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
この研究は、AI駆動のコードアシスタントを使用して、現代技術を形成する影響力のあるコンピュータコードの選択を分析する。
この研究の最初の貢献は、過去50年で最も重要なコードの進歩の半分を調査することであった。
論文 参考訳(メタデータ) (2023-01-05T23:17:17Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。