論文の概要: Cross-target Stance Detection by Exploiting Target Analytical
Perspectives
- arxiv url: http://arxiv.org/abs/2401.01761v1
- Date: Wed, 3 Jan 2024 14:28:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-04 13:43:56.797737
- Title: Cross-target Stance Detection by Exploiting Target Analytical
Perspectives
- Title(参考訳): ターゲット解析的視点の爆発によるターゲット間距離検出
- Authors: Daijun Ding, Rong Chen, Bowen Zhang, Xu Huang, Li Dong, Xiaowen Zhao,
Ge Song, Liwen Jing
- Abstract要約: 目標位置検出(CTSD)は,目標位置からのアノテートデータを利用することで,目標位置の姿勢を推定する重要なタスクである。
CTSDにおける重要なアプローチの1つは、複数のターゲット間の知識ギャップを埋めるために、ドメイン不変の特徴を抽出することである。
本稿では,解析的視点をブリッジとして用いたCTSDのためのMPPTモデルを提案する。
- 参考スコア(独自算出の注目度): 22.320628580895164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-target stance detection (CTSD) is an important task, which infers the
attitude of the destination target by utilizing annotated data derived from the
source target. One important approach in CTSD is to extract domain-invariant
features to bridge the knowledge gap between multiple targets. However, the
analysis of informal and short text structure, and implicit expressions,
complicate the extraction of domain-invariant knowledge. In this paper, we
propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the
analysis perspective as a bridge to transfer knowledge. First, we develop a
two-stage instruct-based chain-of-thought method (TsCoT) to elicit target
analysis perspectives and provide natural language explanations (NLEs) from
multiple viewpoints by formulating instructions based on large language model
(LLM). Second, we propose a multi-perspective prompt-tuning framework
(MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments
results demonstrate the superiority of MPPT against the state-of-the-art
baseline methods.
- Abstract(参考訳): ターゲット間姿勢検出(ctsd)は、ターゲットからの注釈データを利用して目的地目標の姿勢を推定する重要な課題である。
CTSDにおける重要なアプローチの1つは、複数のターゲット間の知識ギャップを埋めるために、ドメイン不変の特徴を抽出することである。
しかし、非公式かつ短いテキスト構造と暗黙の表現の分析は、ドメイン不変知識の抽出を複雑にする。
本稿では,知識を伝達するブリッジとして解析的視点を用いたCTSDのためのMPPT(Multi-Perspective Prompt-Tuning)モデルを提案する。
まず,大規模言語モデル(llm)に基づく指示を定式化することにより,対象分析の視点を解明し,複数の視点から自然言語説明(nles)を提供する2段階の指導型連鎖思考法(tscot)を開発した。
次に,NLEを姿勢予測器に融合させるマルチパースペクティブ・プロンプトチューニングフレームワーク(MultiPLN)を提案する。
実験の結果,MPPTの最先端のベースライン法に対する優位性を示した。
関連論文リスト
- Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation [39.7657197805346]
Point Cloud few-shot semantic segmentation (PC-FSS)は、特定のクエリポイントクラウドに、いくつかのアノテーション付きのサポートサンプルで、新しいカテゴリのターゲットをセグメントすることを目的としている。
本稿では,DLE(Decoupled Localization and Expansion)の精神における,シンプルで効果的な枠組みを提案する。
構造的ローカライゼーションモジュール(SLM)と自己拡張モジュール(SEM)を含むDLEは、いくつかのメリットを享受している。
論文 参考訳(メタデータ) (2024-08-25T07:34:32Z) - How to Understand "Support"? An Implicit-enhanced Causal Inference
Approach for Weakly-supervised Phrase Grounding [18.97081348819219]
WPG(Wakly-supervised Phrase Grounding)は,微粒な句領域マッチングを推定する新たな課題である。
本稿では,暗黙的な関係をモデル化する上での課題に対処するインプリシット強化因果推論手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T12:49:48Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - Mutual Information Regularization for Weakly-supervised RGB-D Salient
Object Detection [33.210575826086654]
弱教師付きRGB-Dサルエント物体検出モデルを提案する。
モーダル相互情報正規化による効果的なマルチモーダル表現学習に着目した。
論文 参考訳(メタデータ) (2023-06-06T12:36:57Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
単一ドメインの一般化(Single Domain Generalization)は、単一のソースドメイン上でモデルをトレーニングすることで、目に見えないターゲットドメインに一般化する問題に取り組む。
本稿では、事前学習された視覚言語モデルを用いて、テキストプロンプトを介して意味領域の概念を導入することを提案する。
本手法は,検出器のバックボーンから抽出した特徴に作用する意味的拡張戦略と,テキストに基づく分類損失によって実現される。
論文 参考訳(メタデータ) (2023-01-13T12:01:18Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
マルチオブジェクトトラッキング(MOT)は、動画フレーム全体で対象物を関連付け、移動軌道全体を取得することを目的としている。
埋め込み法はMOTにおける物体の位置推定と時間的同一性関連において重要な役割を担っている。
まず 7 つの異なる視点からMOT への埋め込み手法の奥行き解析による包括的概要を述べる。
論文 参考訳(メタデータ) (2022-05-22T06:54:33Z) - Detecting Human-Object Interactions with Object-Guided Cross-Modal
Calibrated Semantics [6.678312249123534]
我々は,オブジェクト指向の統計モデルを用いて,エンドツーエンドのモデルを強化することを目指している。
本稿では,Verb Semantic Model (VSM) とセマンティックアグリゲーション(セマンティックアグリゲーション)を用いて,このオブジェクト誘導階層から利益を得る方法を提案する。
上記のモジュールの組み合わせは、オブジェクト指向クロスモーダルネットワーク(OCN)を構成する。
論文 参考訳(メタデータ) (2022-02-01T07:39:04Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。