論文の概要: Representation Learning of Multivariate Time Series using Attention and
Adversarial Training
- arxiv url: http://arxiv.org/abs/2401.01987v1
- Date: Wed, 3 Jan 2024 21:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 16:21:27.355317
- Title: Representation Learning of Multivariate Time Series using Attention and
Adversarial Training
- Title(参考訳): 注意と逆訓練を用いた多変量時系列表現学習
- Authors: Leon Scharw\"achter and Sebastian Otte
- Abstract要約: 変換器をベースとしたオートエンコーダを提案し, 逆方向のトレーニングスキームを用いて, 人工時系列信号を生成する。
その結果,生成した信号は畳み込みネットワークを用いた場合よりも,模範的データセットとの類似性が高いことがわかった。
- 参考スコア(独自算出の注目度): 2.0577627277681887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A critical factor in trustworthy machine learning is to develop robust
representations of the training data. Only under this guarantee methods are
legitimate to artificially generate data, for example, to counteract imbalanced
datasets or provide counterfactual explanations for blackbox decision-making
systems. In recent years, Generative Adversarial Networks (GANs) have shown
considerable results in forming stable representations and generating realistic
data. While many applications focus on generating image data, less effort has
been made in generating time series data, especially multivariate signals. In
this work, a Transformer-based autoencoder is proposed that is regularized
using an adversarial training scheme to generate artificial multivariate time
series signals. The representation is evaluated using t-SNE visualizations,
Dynamic Time Warping (DTW) and Entropy scores. Our results indicate that the
generated signals exhibit higher similarity to an exemplary dataset than using
a convolutional network approach.
- Abstract(参考訳): 信頼できる機械学習の重要な要因は、トレーニングデータの堅牢な表現を開発することである。
この保証方法の下でのみ、例えば、不均衡データセットの反作用やブラックボックス意思決定システムに対する反事実的説明を提供するために、人工的にデータを生成するのが正当である。
近年,GAN(Generative Adversarial Networks)は,安定な表現の形成と現実的なデータ生成にかなりの成果を上げている。
多くのアプリケーションは画像データを生成することに重点を置いているが、時系列データ、特に多変量信号を生成する作業は少ない。
本研究では, 対数学習方式を用いて, 人工多変量時系列信号を生成するトランスフォーマーベースのオートエンコーダを提案する。
この表現は、t-SNE可視化、動的時間ウォーピング(DTW)、エントロピースコアを用いて評価される。
その結果,生成した信号は畳み込みネットワークアプローチよりも模範データセットと高い類似性を示すことがわかった。
関連論文リスト
- State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
本研究では,表現表現を効率よく学習する新しい方法である,フーリエ変換(SPF)による状態列予測を提案する。
本研究では,状態系列における構造情報の存在を理論的に解析する。
実験により,提案手法はサンプル効率と性能の両面で,最先端のアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-24T14:47:02Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network [4.989480853499916]
時系列データは、医療機械学習アプリケーションで使用される最も一般的なタイプのデータの1つである。
本稿では,現実的な合成時系列データ列を生成可能な変換器ベースのGANであるTS-GANを紹介する。
実時間と生成した時系列データの類似性を実証するために,可視化と次元削減技術を用いている。
論文 参考訳(メタデータ) (2022-02-06T03:05:47Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
論文 参考訳(メタデータ) (2021-06-01T19:53:24Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
本研究では,実効かつ解釈可能な時系列異常検出のための,グラフニューラルネットワークを用いた自動エンコーダ(VAE)モデルを提案する。
我々は,提案モデルが3つの公開データセットの強いベースラインを上回っており,大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-18T09:50:00Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
データ駆動・レアイベント予測アルゴリズムのトレーニングにおける制限要因の1つは、関心のあるイベントの不足である。
本研究では,データインフォームド・オーバーサンプリングを行う手段として,条件付き生成逆数ネットワーク(CGAN)の有用性を検討する。
論文 参考訳(メタデータ) (2021-05-16T22:23:23Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
時間依存nppシミュレーションデータをモデル化するために、教師付き学習方法でトランスフォーマと呼ばれる高度なテンポラルニューラルネットワークを使用する。
トランスはシーケンシャルデータの特性を学習し、テストデータセット上で約99%の分類精度で有望な性能が得られる。
論文 参考訳(メタデータ) (2021-04-09T14:26:25Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。