One-step implementation of nonadiabatic geometric fSim gate in superconducting circuits
- URL: http://arxiv.org/abs/2401.02234v3
- Date: Fri, 12 Apr 2024 08:04:20 GMT
- Title: One-step implementation of nonadiabatic geometric fSim gate in superconducting circuits
- Authors: M. -R. Yun, Zheng Shan, Li-Li Sun, L. -L. Yan, Yu Jia S. -L. Su, G. Chen,
- Abstract summary: We propose a one-step implementation of the nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic controlled phase (CP) gate and a nonadiabatic noncyclic geometric iSWAP gate.
Compared to the composite nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic CP gate and a nonadiabatic geometric iSWAP gate, our scheme only takes half the time and demonstrates to parameter fluctuations, as well as to environmental impacts.
- Score: 0.18325544108743214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its significant application in reducing algorithm depth, fSim gates have attracted a lot of attention. However, during the implementation of quantum gates, fluctuations in control parameters and decoherence caused by the environment may lead to a decrease in the fidelity of the gate. Implementing the fSim gate that is robust to these factors in one step remains an unresolved issue. In this manuscript, we propose a one-step implementation of the nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic controlled phase (CP) gate and a nonadiabatic noncyclic geometric iSWAP gate with parallel paths in a tunable superconducting circuit. Compared to the composite nonadiabatic geometric fSim gate composed of a nonadiabatic holonomic CP gate and a nonadiabatic geometric iSWAP gate, our scheme only takes half the time and demonstrates robustness to parameter fluctuations, as well as to environmental impacts. Moreover, the scheme does not require complex controls, making it very easy to implement in experiments, and can be achieved in various circuit structures. Our scheme may provide a promising path toward quantum computation and simulation.
Related papers
- Universal quantum computation via scalable measurement-free error correction [45.29832252085144]
We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.
We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.
In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
arXiv Detail & Related papers (2024-12-19T18:55:44Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Coherence-protected nonadiabatic geometric quantum computation [0.0]
We show that based on the system Hamiltonian that realizes a nonadiabatic geometric gate, one may construct a new system Hamiltonian.
A coherence-protected nonadiabatic geometric gate is realized with the new system Hamiltonian.
arXiv Detail & Related papers (2022-05-05T14:58:26Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Nonadiabatic geometric quantum gates that are insensitive to
qubit-frequency drifts [8.750801670077806]
In the current implementation of nonadiabatic geometric phases, operational and/or random errors tend to destruct the conditions that induce geometric phases.
Here, we apply the path-design strategy to explain in detail why both configurations can realize universal quantum gates in a single-loop way.
Our scheme provides a promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
arXiv Detail & Related papers (2021-03-16T12:05:45Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.