ReFusion: Improving Natural Language Understanding with Computation-Efficient Retrieval Representation Fusion
- URL: http://arxiv.org/abs/2401.02993v2
- Date: Mon, 27 May 2024 07:04:19 GMT
- Title: ReFusion: Improving Natural Language Understanding with Computation-Efficient Retrieval Representation Fusion
- Authors: Shangyu Wu, Ying Xiong, Yufei Cui, Xue Liu, Buzhou Tang, Tei-Wei Kuo, Chun Jason Xue,
- Abstract summary: Retrieval-based augmentations (RA) incorporating knowledge from an external database into language models have greatly succeeded in various knowledge-intensive (KI) tasks.
Existing works focus on concatenating retrievals with inputs to improve model performance.
This paper proposes a new paradigm of RA named textbfReFusion, a computation-efficient Retrieval representation Fusion with bi-level optimization.
- Score: 22.164620956284466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-based augmentations (RA) incorporating knowledge from an external database into language models have greatly succeeded in various knowledge-intensive (KI) tasks. However, integrating retrievals in non-knowledge-intensive (NKI) tasks is still challenging. Existing works focus on concatenating retrievals with inputs to improve model performance. Unfortunately, the use of retrieval concatenation-based augmentations causes an increase in the input length, substantially raising the computational demands of attention mechanisms. This paper proposes a new paradigm of RA named \textbf{ReFusion}, a computation-efficient Retrieval representation Fusion with bi-level optimization. Unlike previous works, ReFusion directly fuses the retrieval representations into the hidden states of models. Specifically, ReFusion leverages an adaptive retrieval integrator to seek the optimal combination of the proposed ranking schemes across different model layers. Experimental results demonstrate that the proposed ReFusion can achieve superior and robust performance in various NKI tasks.
Related papers
- GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
We propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively.
We show that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10.
arXiv Detail & Related papers (2024-09-17T05:59:32Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
arXiv Detail & Related papers (2024-06-04T12:43:23Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - On-the-fly Text Retrieval for End-to-End ASR Adaptation [9.304386210911822]
We propose augmenting a transducer-based ASR model with a retrieval language model, which retrieves from an external text corpus plausible completions for a partial ASR hypothesis.
Our experiments show that the proposed model significantly improves the performance of a transducer baseline on a pair of question-answering datasets.
arXiv Detail & Related papers (2023-03-20T08:54:40Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.