QoS-Aware Graph Contrastive Learning for Web Service Recommendation
- URL: http://arxiv.org/abs/2401.03162v1
- Date: Sat, 6 Jan 2024 08:36:04 GMT
- Title: QoS-Aware Graph Contrastive Learning for Web Service Recommendation
- Authors: Jeongwhan Choi, Duksan Ryu
- Abstract summary: This study aims to address the challenges of data sparsity and the cold-start problem in web service recommendation using Quality of Service (QoS)
Our model harnesses the power of graph contrastive learning to handle cold-start problems and improve accuracy effectively.
Our research contributes to the potential for more accurate recommendations in real-world scenarios, even with limited user-service interaction data.
- Score: 3.130026754572506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rapid growth of cloud services driven by advancements in web service
technology, selecting a high-quality service from a wide range of options has
become a complex task. This study aims to address the challenges of data
sparsity and the cold-start problem in web service recommendation using Quality
of Service (QoS). We propose a novel approach called QoS-aware graph
contrastive learning (QAGCL) for web service recommendation. Our model
harnesses the power of graph contrastive learning to handle cold-start problems
and improve recommendation accuracy effectively. By constructing contextually
augmented graphs with geolocation information and randomness, our model
provides diverse views. Through the use of graph convolutional networks and
graph contrastive learning techniques, we learn user and service embeddings
from these augmented graphs. The learned embeddings are then utilized to
seamlessly integrate QoS considerations into the recommendation process.
Experimental results demonstrate the superiority of our QAGCL model over
several existing models, highlighting its effectiveness in addressing data
sparsity and the cold-start problem in QoS-aware service recommendations. Our
research contributes to the potential for more accurate recommendations in
real-world scenarios, even with limited user-service interaction data.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
arXiv Detail & Related papers (2024-02-29T05:44:41Z) - Large Language Model Meets Graph Neural Network in Knowledge Distillation [7.686812700685084]
We propose a temporal-aware framework for predicting Quality of Service (QoS) in service-oriented architectures.
Our proposed TOGCL framework significantly outperforms state-of-the-art methods across multiple metrics, achieving improvements of up to 38.80%.
arXiv Detail & Related papers (2024-02-08T18:33:21Z) - ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph
Convolution [0.16317061277456998]
We introduce a real-time prediction framework (called ARRQP) with a specific emphasis on improving resilience to anomalies in the data.
ARRQP integrates both contextual information and collaborative insights, enabling a comprehensive understanding of user-service interactions.
Results on the benchmark WS-DREAM dataset demonstrate the framework's effectiveness in achieving accurate and timely predictions.
arXiv Detail & Related papers (2023-09-22T04:37:51Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - An Adaptive Graph Pre-training Framework for Localized Collaborative
Filtering [79.17319280791237]
We propose an adaptive graph pre-training framework for localized collaborative filtering (ADAPT)
ADAPT captures both the common knowledge across different graphs and the uniqueness for each graph.
It does not require transferring user/item embeddings, and is able to capture both the common knowledge across different graphs and the uniqueness for each graph.
arXiv Detail & Related papers (2021-12-14T06:53:13Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
Graph Learning based Recommender Systems (GLRS) employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations.
We provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations.
arXiv Detail & Related papers (2021-05-13T14:50:45Z) - A Light Heterogeneous Graph Collaborative Filtering Model using Textual
Information [16.73333758538986]
We exploit the relevant and easily accessible textual information by advanced natural language processing (NLP) models.
We propose a light RGCN-based (RGCN, relational graph convolutional network) collaborative filtering method on heterogeneous graphs.
arXiv Detail & Related papers (2020-10-04T11:10:37Z) - EWS-GCN: Edge Weight-Shared Graph Convolutional Network for
Transactional Banking Data [2.1169216065483996]
We show that information about connections between clients based on money transfers between them allows us to significantly improve the quality of credit scoring.
We develop a new graph neural network model EWS-GCN that combines ideas of graph convolutional and recurrent neural networks via attention mechanism.
arXiv Detail & Related papers (2020-09-30T12:09:28Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.