Towards Effective Multiple-in-One Image Restoration: A Sequential and Prompt Learning Strategy
- URL: http://arxiv.org/abs/2401.03379v3
- Date: Wed, 20 Mar 2024 06:33:20 GMT
- Title: Towards Effective Multiple-in-One Image Restoration: A Sequential and Prompt Learning Strategy
- Authors: Xiangtao Kong, Chao Dong, Lei Zhang,
- Abstract summary: We investigate in-depth the multiple-in-one (MiO) IR problem, which comprises seven popular IR tasks.
To tackle these challenges, we present two simple yet effective strategies.
By evaluating on 19 test sets, we demonstrate that the sequential and prompt learning strategies can significantly enhance the MiO performance.
- Score: 19.73705830803488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While single task image restoration (IR) has achieved significant successes, it remains a challenging issue to train a single model which can tackle multiple IR tasks. In this work, we investigate in-depth the multiple-in-one (MiO) IR problem, which comprises seven popular IR tasks. We point out that MiO IR faces two pivotal challenges: the optimization of diverse objectives and the adaptation to multiple tasks. To tackle these challenges, we present two simple yet effective strategies. The first strategy, referred to as sequential learning, attempts to address how to optimize the diverse objectives, which guides the network to incrementally learn individual IR tasks in a sequential manner rather than mixing them together. The second strategy, i.e., prompt learning, attempts to address how to adapt to the different IR tasks, which assists the network to understand the specific task and improves the generalization ability. By evaluating on 19 test sets, we demonstrate that the sequential and prompt learning strategies can significantly enhance the MiO performance of commonly used CNN and Transformer backbones. Our experiments also reveal that the two strategies can supplement each other to learn better degradation representations and enhance the model robustness. It is expected that our proposed MiO IR formulation and strategies could facilitate the research on how to train IR models with higher generalization capabilities.
Related papers
- Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
We propose an efficient fine-tuning framework with two novel approaches: Vision Cue Enhancement (VCE) and Dual Low-Rank Adaptation (Dual-LoRA)
VCE enhances the vision projector by integrating multi-level visual cues, improving the model's ability to capture fine-grained visual features.
Dual-LoRA introduces a dual low-rank structure for instruction tuning, decoupling learning into skill and task spaces to enable precise control and efficient adaptation across diverse tasks.
arXiv Detail & Related papers (2024-11-19T11:03:09Z) - SMART: Self-learning Meta-strategy Agent for Reasoning Tasks [44.45037694899524]
We introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to learn and select the most effective strategies for various reasoning tasks.
We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement.
Our experiments demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance.
arXiv Detail & Related papers (2024-10-21T15:55:04Z) - MrRank: Improving Question Answering Retrieval System through Multi-Result Ranking Model [4.173772253427094]
Large Language Models (LLMs) often struggle with hallucinations and outdated information.
To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge.
We propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems.
arXiv Detail & Related papers (2024-06-09T11:00:01Z) - Deep Reinforcement Learning with Adaptive Hierarchical Reward for
MultiMulti-Phase Multi Multi-Objective Dexterous Manipulation [11.638614321552616]
Varying priority makes a robot hardly or even failed to learn an optimal policy with a deep reinforcement learning (DRL) method.
We develop a novel Adaptive Hierarchical Reward Mechanism (AHRM) to guide the DRL agent to learn manipulation tasks with multiple prioritized objectives.
The proposed method is validated in a multi-objective manipulation task with a JACO robot arm.
arXiv Detail & Related papers (2022-05-26T15:44:31Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
A general-purpose robot should be able to master a wide range of tasks and quickly learn a novel one by leveraging past experiences.
One-shot imitation learning (OSIL) approaches this goal by training an agent with (pairs of) expert demonstrations.
We push for a higher level of generalization ability by investigating a more ambitious multi-task setup.
arXiv Detail & Related papers (2021-10-26T05:49:46Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z) - Joint Goal and Strategy Inference across Heterogeneous Demonstrators via
Reward Network Distillation [1.1470070927586016]
inverse reinforcement learning (IRL) seeks to learn a reward function from readily-obtained human demonstrations.
We propose a method to jointly infer a task goal and humans' strategic preferences via network distillation.
We demonstrate our algorithm can better recover task reward and strategy rewards and imitate the strategies in two simulated tasks and a real-world table tennis task.
arXiv Detail & Related papers (2020-01-02T16:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.