論文の概要: On Leveraging Large Language Models for Enhancing Entity Resolution
- arxiv url: http://arxiv.org/abs/2401.03426v1
- Date: Sun, 7 Jan 2024 09:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 19:04:00.135442
- Title: On Leveraging Large Language Models for Enhancing Entity Resolution
- Title(参考訳): エンティティ解決のための大規模言語モデル活用について
- Authors: Huahang Li, Longyu Feng, Shuangyin Li, Fei Hao, Chen Jason Zhang,
Yuanfeng Song, Lei Chen
- Abstract要約: 本稿では,大規模言語モデル(LLM)を実体分解プロセスで効率的に活用するための戦略を紹介する。
当社のアプローチは、予算に制限された消費を維持しながら、最も効果的なマッチング質問を最適に選択します。
エントロピーを指標として提案手法の有効性を評価し,提案手法の有効性と有効性について実験的に検証した。
- 参考スコア(独自算出の注目度): 11.668263762236343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity resolution, the task of identifying and consolidating records that
pertain to the same real-world entity, plays a pivotal role in various sectors
such as e-commerce, healthcare, and law enforcement. The emergence of Large
Language Models (LLMs) like GPT-4 has introduced a new dimension to this task,
leveraging their advanced linguistic capabilities. This paper explores the
potential of LLMs in the entity resolution process, shedding light on both
their advantages and the computational complexities associated with large-scale
matching. We introduce strategies for the efficient utilization of LLMs,
including the selection of an optimal set of matching questions, namely MQsSP,
which is proved to be a NP-hard problem. Our approach optimally chooses the
most effective matching questions while keep consumption limited to your budget
. Additionally, we propose a method to adjust the distribution of possible
partitions after receiving responses from LLMs, with the goal of reducing the
uncertainty of entity resolution. We evaluate the effectiveness of our approach
using entropy as a metric, and our experimental results demonstrate the
efficiency and effectiveness of our proposed methods, offering promising
prospects for real-world applications.
- Abstract(参考訳): エンティティ・リゾリューション(Entity resolution)は、同じ現実世界のエンティティに関連するレコードを識別・統合するタスクであり、eコマース、ヘルスケア、法執行機関などの様々な分野において重要な役割を果たす。
GPT-4のような大規模言語モデル(LLM)の出現は、その高度な言語機能を活用して、このタスクに新たな次元を導入した。
本稿では,LLMの実体分解過程における可能性について検討し,その利点と大規模マッチングに伴う計算複雑性の両面に光を当てる。
本稿では,np-hard問題であることが判明した mqssp というマッチング質問の最適集合の選択を含む,llm の効率的な利用のための戦略を紹介する。
私たちのアプローチは、予算に限りなく消費を保ちながら、最も効果的なマッチング質問を最適に選択します。
さらに, LLMからの応答を受信したあとのパーティションの分布を調整する手法を提案し, 実体分解能の不確実性を低減することを目的とする。
我々は, エントロピーを指標とした手法の有効性を評価し, 提案手法の有効性と効果を実証し, 実世界の応用に有望な可能性を示した。
関連論文リスト
- Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Efficient Sequential Decision Making with Large Language Models [19.083642464977224]
本稿では,大規模言語モデル(LLM)の成功を逐次意思決定に拡張することに焦点を当てる。
既存の取り組みは、 (i) 意思決定のための再訓練または微調整 LLM または (ii) 事前訓練された LLM の設計プロンプトのいずれかである。
本稿では,オンラインモデル選択アルゴリズムを活用してLLMエージェントを逐次意思決定に効率的に組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T22:13:22Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
大規模言語モデル(LLM)における費用効率の高いクエリ割り当て問題に対処するフレームワークを提案する。
当社のフレームワークであるOpsLLMは、ユーザに対して、予算の制約やパフォーマンスの優先事項に合わせて、選択可能なさまざまな最適なソリューションを提供します。
OptLLMの有効性を評価するため,テキスト分類,質問応答,感情分析,推論,ログ解析など,さまざまなタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-24T01:05:37Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - Cost-Effective In-Context Learning for Entity Resolution: A Design Space
Exploration [26.65259285701739]
本稿では,ERに対する費用対効果のあるバッチプロンプト手法の開発方法について,総合的研究を行う。
PLMに基づく手法と比較して,バッチプロンプトはERにとって非常に費用対効果が高いことが判明した。
また,マッチング精度と金銭的コストのバランスを効果的に整えるための包括的実証選択戦略も考案した。
論文 参考訳(メタデータ) (2023-12-07T02:09:27Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。