A Large Language Model Supported Synthesis of Contemporary Academic
Integrity Research Trends
- URL: http://arxiv.org/abs/2401.03481v1
- Date: Sun, 7 Jan 2024 13:23:29 GMT
- Title: A Large Language Model Supported Synthesis of Contemporary Academic
Integrity Research Trends
- Authors: Thomas Lancaster
- Abstract summary: This paper reports on qualitative content analysis undertaken using ChatGPT, a Large Language Model (LLM)
The analysis identified 7 research themes and 13 key areas for exploration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reports on qualitative content analysis undertaken using ChatGPT,
a Large Language Model (LLM), to identify primary research themes in current
academic integrity research as well as the methodologies used to explore these
areas. The analysis by the LLM identified 7 research themes and 13 key areas
for exploration. The outcomes from the analysis suggest that much contemporary
research in the academic integrity field is guided by technology. Technology is
often explored as potential way of preventing academic misconduct, but this
could also be a limiting factor when aiming to promote a culture of academic
integrity. The findings underscore that LLM led research may be option in the
academic integrity field, but that there is also a need for continued
traditional research. The findings also indicate that researchers and
educational providers should continue to develop policy and operational
frameworks for academic integrity. This will help to ensure that academic
standards are maintained across the wide range of settings that are present in
modern education.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Position: Multimodal Large Language Models Can Significantly Advance Scientific Reasoning [51.11965014462375]
Multimodal Large Language Models (MLLMs) integrate text, images, and other modalities.
This paper argues that MLLMs can significantly advance scientific reasoning across disciplines such as mathematics, physics, chemistry, and biology.
arXiv Detail & Related papers (2025-02-05T04:05:27Z) - NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit [9.621564860645513]
We propose a novel framework that leverages Natural Language Processing (NLP) techniques.
This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain.
We introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature.
arXiv Detail & Related papers (2024-09-10T05:41:40Z) - A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges [0.0]
Knowledge Organization Systems (KOSs) play a fundamental role in categorising, managing, and retrieving information.
This paper aims to present a comprehensive survey of the current KOS for academic disciplines.
We analysed 45 KOSs according to five main dimensions: scope, structure, usage, and links to other KOSs.
arXiv Detail & Related papers (2024-09-06T17:54:43Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Insights Towards Better Case Study Reporting in Software Engineering [0.0]
This paper aims to share insights that can enhance the quality and impact of case study reporting.
We emphasize the need to follow established guidelines, accurate classification, and detailed context descriptions in case studies.
We aim to encourage researchers to adopt more rigorous and communicative strategies, ensuring that case studies are methodologically sound.
arXiv Detail & Related papers (2024-02-13T12:29:26Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - Recommendations for Systematic Research on Emergent Language [1.52292571922932]
We identify the overarching goals of emergent language research, categorizing them as either science or engineering.
We present core methodological elements of science and engineering, analyze their role in current emergent language research, and recommend how to apply these elements.
arXiv Detail & Related papers (2022-06-22T18:10:44Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.