論文の概要: GLOCALFAIR: Jointly Improving Global and Local Group Fairness in
Federated Learning
- arxiv url: http://arxiv.org/abs/2401.03562v1
- Date: Sun, 7 Jan 2024 18:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 18:13:32.343858
- Title: GLOCALFAIR: Jointly Improving Global and Local Group Fairness in
Federated Learning
- Title(参考訳): GLOCALFAIR:フェデレートラーニングにおけるグローバルとローカルのグループフェアネスを共同で改善
- Authors: Syed Irfan Ali Meerza, Luyang Liu, Jiaxin Zhang, Jian Liu
- Abstract要約: フェデレートラーニング(FL)は、データプライバシを犠牲にすることなく、クライアント間で共有モデルを共同で学習するための、将来的なソリューションとして登場した。
FLは、データの不均一性やパーティーの選択など、固有のFL特性のために、特定の人口集団に対してバイアスを受ける傾向にある。
クライアントのプライベートデータセットに関する詳細な統計を必要とせずに,グローバルおよびローカルグループフェアネスを改善するクライアントサーバのコードサインであるGFAIRを提案する。
- 参考スコア(独自算出の注目度): 8.77650197859131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has emerged as a prospective solution for
collaboratively learning a shared model across clients without sacrificing
their data privacy. However, the federated learned model tends to be biased
against certain demographic groups (e.g., racial and gender groups) due to the
inherent FL properties, such as data heterogeneity and party selection. Unlike
centralized learning, mitigating bias in FL is particularly challenging as
private training datasets and their sensitive attributes are typically not
directly accessible. Most prior research in this field only focuses on global
fairness while overlooking the local fairness of individual clients. Moreover,
existing methods often require sensitive information about the client's local
datasets to be shared, which is not desirable. To address these issues, we
propose GLOCALFAIR, a client-server co-design fairness framework that can
jointly improve global and local group fairness in FL without the need for
sensitive statistics about the client's private datasets. Specifically, we
utilize constrained optimization to enforce local fairness on the client side
and adopt a fairness-aware clustering-based aggregation on the server to
further ensure the global model fairness across different sensitive groups
while maintaining high utility. Experiments on two image datasets and one
tabular dataset with various state-of-the-art fairness baselines show that
GLOCALFAIR can achieve enhanced fairness under both global and local data
distributions while maintaining a good level of utility and client fairness.
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は、データプライバシを犠牲にすることなく、クライアント間で共有モデルを共同学習するための有望なソリューションとして登場した。
しかしながら、フェデレーション学習モデルは、データの不均一性や政党の選択といった固有のfl特性のために、特定の集団グループ(例えば、人種や性別グループ)に対して偏りがちである。
集中学習とは異なり、FLのバイアス軽減は、プライベートトレーニングデータセットとその機密属性が直接アクセスできないため、特に困難である。
この分野でのほとんどの先行研究は、個々のクライアントのローカルな公平性を見落としながら、グローバルな公平性のみに焦点を当てている。
さらに、既存のメソッドは、しばしば、クライアントのローカルデータセットに関する機密情報を共有する必要があるが、これは望ましくない。
これらの問題に対処するために,クライアントのプライベートデータセットに関する詳細な統計を必要とせずに,FLにおけるグローバルおよびローカルグループフェアネスを共同で改善するクライアントサーバ共同設計フレームワークであるGLOCALFAIRを提案する。
具体的には、制約付き最適化を利用してクライアント側での局所的公平性を強制し、サーバ上でフェアネス対応のクラスタリングベースのアグリゲーションを適用し、高いユーティリティを維持しながら、異なる機密グループ間のグローバルモデル公平性をさらに確保します。
2つの画像データセットと1つの表型データセットに関する実験により、glocalfairは、優れた実用性とクライアントの公平性を維持しつつ、グローバルおよびローカル両方のデータ分散の下で、拡張された公平性を達成できることが示された。
関連論文リスト
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
論文 参考訳(メタデータ) (2024-11-11T11:26:22Z) - Achieving Fairness Across Local and Global Models in Federated Learning [9.902848777262918]
本研究は,フェデレート学習環境における局所的およびグローバル的公正性を高めるために設計された,新しいアプローチであるtextttEquiFLを紹介する。
textttEquiFLは、フェアネスという用語を局所最適化の目的に取り入れ、局所的なパフォーマンスとフェアネスを効果的にバランスさせる。
textttEquiFLは、各クライアントにおいて、精度と公平性のバランスが良くなるだけでなく、グローバル公正性も達成できることを示す。
論文 参考訳(メタデータ) (2024-06-24T19:42:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data [13.146806294562474]
本稿では,FedCoSR(Federated Contrastive Shareable Representations)という,個人化学習アルゴリズムを提案する。
ローカルモデルの浅い層と典型的なローカル表現のパラメータはどちらもサーバの共有可能な情報である。
クライアント間でのラベル分布スキューによる性能の低下に対処するため、局所表現とグローバル表現の対比学習を採用する。
論文 参考訳(メタデータ) (2024-04-27T14:05:18Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
本稿では,アノテーション予算に制限のあるグローバルモデルを効率的に学習するための,連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と、ローカルクライアントのアクティブサンプリング目標とのミスマッチである。
本稿では,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) を組み合わせた,知識対応型アクティブ・ラーニング(KAFAL)を提案する。
論文 参考訳(メタデータ) (2022-11-24T13:08:43Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
本稿では,クライアント集団をクラスタにグループ化し,共同でトレーニング可能なデータ配信を行う新しいアルゴリズムFLISを提案する。
CIFAR-100/10, SVHN, FMNISTデータセット上の最先端ベンチマークに対するFLISの利点を示す実験結果を示す。
論文 参考訳(メタデータ) (2022-08-20T22:10:48Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - GRP-FED: Addressing Client Imbalance in Federated Learning via
Global-Regularized Personalization [6.592268037926868]
本稿では,データ不均衡問題に対処するため,Global-Regularized Personalization (GRP-FED)を提案する。
適応アグリゲーションでは、グローバルモデルは複数のクライアントを公平に扱い、グローバルな長期的問題を緩和する。
我々のGRP-FEDは,グローバルシナリオとローカルシナリオの両方で改善されている。
論文 参考訳(メタデータ) (2021-08-31T14:09:04Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。