Language Models Encode the Value of Numbers Linearly
- URL: http://arxiv.org/abs/2401.03735v4
- Date: Thu, 14 Nov 2024 06:42:51 GMT
- Title: Language Models Encode the Value of Numbers Linearly
- Authors: Fangwei Zhu, Damai Dai, Zhifang Sui,
- Abstract summary: We study how language models encode the value of numbers, a basic element in math.
Experimental results support the existence of encoded number values in large language models.
Our research provides evidence that LLMs encode the value of numbers linearly.
- Score: 28.88044346200171
- License:
- Abstract: Large language models (LLMs) have exhibited impressive competence in various tasks, but their internal mechanisms on mathematical problems are still under-explored. In this paper, we study a fundamental question: how language models encode the value of numbers, a basic element in math. To study the question, we construct a synthetic dataset comprising addition problems and utilize linear probes to read out input numbers from the hidden states. Experimental results support the existence of encoded number values in LLMs on different layers, and these values can be extracted via linear probes. Further experiments show that LLMs store their calculation results in a similar manner, and we can intervene the output via simple vector additions, proving the causal connection between encoded numbers and language model outputs. Our research provides evidence that LLMs encode the value of numbers linearly, offering insights for better exploring, designing, and utilizing numeric information in LLMs.
Related papers
- The Geometry of Numerical Reasoning: Language Models Compare Numeric Properties in Linear Subspaces [22.31258265337828]
This paper investigates whether large language models (LLMs) utilize numerical attributes encoded in a low-dimensional subspace of the embedding space when answering logical comparison questions.
We first identified these subspaces using partial least squares regression, which effectively encodes the numerical attributes associated with the entities in comparison prompts.
arXiv Detail & Related papers (2024-10-17T03:44:11Z) - LLMs' Understanding of Natural Language Revealed [0.0]
Large language models (LLMs) are the result of a massive experiment in bottom-up, data-driven reverse engineering of language at scale.
We will focus on testing LLMs for their language understanding capabilities, their supposed forte.
arXiv Detail & Related papers (2024-07-29T01:21:11Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [50.22847430754973]
Large language models are not good at math theorem proving using formal languages like Lean.
A significant challenge in this area is the scarcity of training data available in these formal languages.
We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
This paper introduces perplexed, a library for exploring where a language model is perplexed.
We conducted a case study focused on Large Language Models (LLMs) for code generation using an additional tool we built to help with the analysis of code models called codetokenizer.
We found that our studied code LLMs had their worst performance on coding structures where the code was not syntactically correct.
arXiv Detail & Related papers (2024-04-09T22:03:39Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models are assessed.
Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting, perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
arXiv Detail & Related papers (2023-12-19T20:39:12Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
Large Language Models (LLMs) have made remarkable strides in Natural Language Processing.
This study specifically delves into the task of generating natural-language summaries for code snippets, using various LLMs.
arXiv Detail & Related papers (2023-10-25T14:38:40Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - Augmented Language Models: a Survey [55.965967655575454]
This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools.
We refer to them as Augmented Language Models (ALMs)
The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks.
arXiv Detail & Related papers (2023-02-15T18:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.