SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation
- URL: http://arxiv.org/abs/2401.04133v2
- Date: Wed, 29 May 2024 04:16:10 GMT
- Title: SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation
- Authors: Ming-Yi Hong, Yi-Hsiang Huang, Shao-En Lin, You-Chen Teng, Chih-Yu Wang, Che Lin,
- Abstract summary: We introduce SynHING, a novel framework for Synthetic Heterogeneous Information Network Generation.
SynHING systematically identifies major motifs in a target HIN and employs a bottom-up generation process with intra-cluster and inter-cluster merge modules.
It provides ground-truth motifs for evaluating GNN explainer models, setting a new standard for explainable, synthetic HIN generation.
- Score: 31.89877722246351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) excel in delineating graph structures in diverse domains, including community analysis and recommendation systems. As the interpretation of GNNs becomes increasingly important, the demand for robust baselines and expansive graph datasets is accentuated, particularly in the context of Heterogeneous Information Networks (HIN). Addressing this, we introduce SynHING, a novel framework for Synthetic Heterogeneous Information Network Generation aimed at enhancing graph learning and explanation. SynHING systematically identifies major motifs in a target HIN and employs a bottom-up generation process with intra-cluster and inter-cluster merge modules. This process, supplemented by post-pruning techniques, ensures the synthetic HIN closely mirrors the original graph's structural and statistical properties. Crucially, SynHING provides ground-truth motifs for evaluating GNN explainer models, setting a new standard for explainable, synthetic HIN generation and contributing to the advancement of interpretable machine learning in complex networks.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
Graph Transformers (GTs) have been proposed which work in the paradigm that allows message passing to a larger coverage even across the whole graph.
The investigation of GTs on heterogeneous information networks (HINs) is still under-exploited.
We propose a novel model named HINormer, which capitalizes on a larger-range aggregation mechanism for node representation learning.
arXiv Detail & Related papers (2023-02-22T12:25:07Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.