Observing the quantum Mpemba effect in quantum simulations
- URL: http://arxiv.org/abs/2401.04270v2
- Date: Mon, 15 Jul 2024 07:01:05 GMT
- Title: Observing the quantum Mpemba effect in quantum simulations
- Authors: Lata Kh Joshi, Johannes Franke, Aniket Rath, Filiberto Ares, Sara Murciano, Florian Kranzl, Rainer Blatt, Peter Zoller, BenoƮt Vermersch, Pasquale Calabrese, Christian F. Roos, Manoj K. Joshi,
- Abstract summary: We experimentally investigate the quantum Mpemba effect, where a tilted ferromagnet restores its symmetry more rapidly when it is farther from the symmetric state.
We present the first experimental evidence of the occurrence of this effect in a trapped-ion quantum simulator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-equilibrium physics of many-body quantum systems harbors various unconventional phenomena. In this study, we experimentally investigate one of the most puzzling of these phenomena -- the quantum Mpemba effect, where a tilted ferromagnet restores its symmetry more rapidly when it is farther from the symmetric state compared to when it is closer. We present the first experimental evidence of the occurrence of this effect in a trapped-ion quantum simulator. The symmetry breaking and restoration are monitored through entanglement asymmetry, probed via randomized measurements, and postprocessed using the classical shadows technique. Our findings are further substantiated by measuring the Frobenius distance between the experimental state and the stationary thermal symmetric theoretical state, offering direct evidence of subsystem thermalization.
Related papers
- Quantum Mpemba effects in many-body localization systems [3.625262223613696]
We show that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium.
We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization.
arXiv Detail & Related papers (2024-08-14T18:00:47Z) - Quantum Mpemba Effect in Random Circuits [0.0]
We study the quantum Mpemba effect in charge-preserving random circuits on qudits via entanglement asymmetry.
We show that the more asymmetric certain classes of initial states are, the faster they restore symmetry and reach the grand-canonical ensemble.
Our results represent a significant advancement in clarifying the emergence of Mpemba physics in generic systems.
arXiv Detail & Related papers (2024-05-23T12:51:54Z) - The quantum Mpemba effect in free-fermionic mixed states [0.0]
In certain scenarios, greater initial symmetry breaking leads to faster restoration, akin to a quantum Mpemba effect.
This study focuses on investigating the effect of mixed initial states and non-unitary dynamics on symmetry restoration.
arXiv Detail & Related papers (2024-05-14T19:07:25Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems [0.0]
The quantum Mpemba effect is the counter-intuitive non-equilibrium phenomenon wherein the dynamic restoration of a broken symmetry occurs more rapidly when the initial state exhibits a higher degree of symmetry breaking.
Here we focus on a two-dimensional free-fermion lattice employing the entanglement asymmetry as a measure of symmetry breaking.
We find that the quantum Mpemba effect is strongly affected by the size of the system in the transverse dimension, with the potential to either enhance or spoil the phenomenon depending on the initial states.
arXiv Detail & Related papers (2024-03-07T13:38:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.