Quantum Mpemba effects in many-body localization systems
- URL: http://arxiv.org/abs/2408.07750v1
- Date: Wed, 14 Aug 2024 18:00:47 GMT
- Title: Quantum Mpemba effects in many-body localization systems
- Authors: Shuo Liu, Hao-Kai Zhang, Shuai Yin, Shi-Xin Zhang, Hong Yao,
- Abstract summary: We show that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium.
We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization.
- Score: 3.625262223613696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nonequilibrium dynamics of quantum many-body systems have attracted growing attention due to various intriguing phenomena absent in equilibrium physics. One famous example is the quantum Mpemba effect, where the subsystem symmetry is restored faster under a symmetric quench from a more asymmetric initial state. The quantum Mpemba effect has been extensively studied in integrable and chaotic systems. In this Letter, we investigate symmetry restoration and quantum Mpemba effect in many-body localized systems with various initial states. We reveal that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium. Furthermore, we demonstrate that the presence of the quantum Mpemba effect is universal for any initial tilted product state, contrasting to the cases in the chaotic systems where the presence of the quantum Mpemba effect relies on the choice of initial states. We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization. This Letter not only sheds light on extending the quantum Mpemba effect to more non-equilibrium settings but also contributes to a deeper understanding of the many-body localization.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Quantum Mpemba Effect in Random Circuits [0.0]
We study the quantum Mpemba effect in charge-preserving random circuits on qudits via entanglement asymmetry.
We show that the more asymmetric certain classes of initial states are, the faster they restore symmetry and reach the grand-canonical ensemble.
Our results represent a significant advancement in clarifying the emergence of Mpemba physics in generic systems.
arXiv Detail & Related papers (2024-05-23T12:51:54Z) - The quantum Mpemba effect in free-fermionic mixed states [0.0]
In certain scenarios, greater initial symmetry breaking leads to faster restoration, akin to a quantum Mpemba effect.
This study focuses on investigating the effect of mixed initial states and non-unitary dynamics on symmetry restoration.
arXiv Detail & Related papers (2024-05-14T19:07:25Z) - Observing the quantum Mpemba effect in quantum simulations [0.0]
We experimentally investigate the quantum Mpemba effect, where a tilted ferromagnet restores its symmetry more rapidly when it is farther from the symmetric state.
We present the first experimental evidence of the occurrence of this effect in a trapped-ion quantum simulator.
arXiv Detail & Related papers (2024-01-08T22:50:23Z) - Entanglement asymmetry and quantum Mpemba effect in the XY spin chain [0.0]
Entanglement asymmetry is a quantity introduced to measure how much a symmetry is broken in a part of an extended quantum system.
We study the entanglement asymmetry at equilibrium taking the ground state of the XY spin chain.
We find that the power law governing symmetry restoration depends discontinuously on whether the initial state is critical or not.
arXiv Detail & Related papers (2023-10-11T14:10:53Z) - Microscopic origin of the quantum Mpemba effect in integrable systems [0.0]
Mpemba effect states that non-equilibrium states may relax faster when they are further from equilibrium.
We study a quantum version of the Mpemba effect that takes place in closed body systems with a U(1) conserved charge.
arXiv Detail & Related papers (2023-10-06T17:59:17Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.