論文の概要: Strategic Client Selection to Address Non-IIDness in HAPS-enabled FL Networks
- arxiv url: http://arxiv.org/abs/2401.05308v2
- Date: Wed, 16 Apr 2025 15:14:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 21:28:14.662612
- Title: Strategic Client Selection to Address Non-IIDness in HAPS-enabled FL Networks
- Title(参考訳): HAPS対応FLネットワークにおける非IID性に対応する戦略的クライアント選択
- Authors: Amin Farajzadeh, Animesh Yadav, Halim Yanikomeroglu,
- Abstract要約: 非IIDデータの悪影響を軽減するために,属性に基づく新たなクライアント選択手法を提案する。
シミュレーション結果は、FLモデルの精度と収束率を高めるために提案したクライアント選択戦略の有効性を裏付けるものである。
- 参考スコア(独自算出の注目度): 21.446301665317378
- License:
- Abstract: The deployment of federated learning (FL) in non-terrestrial networks (NTN) that are supported by high-altitude platform stations (HAPS) offers numerous advantages. Due to its large footprint, it facilitates interaction with a large number of line-of-sight (LoS) ground clients, each possessing diverse datasets along with distinct communication and computational capabilities. The presence of many clients enhances the accuracy of the FL model and speeds up convergence. However, the variety of datasets among these clients poses a significant challenge, as it leads to pervasive non-independent and identically distributed (non-IID) data. The data non-IIDness results in markedly reduced training accuracy and slower convergence rates. To address this issue, we propose a novel weighted attribute-based client selection strategy that leverages multiple user-specific attributes, including historical traffic patterns, instantaneous channel conditions, computational capabilities, and previous-round learning performance. By combining these attributes into a composite score for each user at every FL round and selecting users with higher scores as FL clients, the framework ensures more uniform and representative data distributions, effectively mitigating the adverse effects of non-IID data. Simulation results corroborate the effectiveness of the proposed client selection strategy in enhancing FL model accuracy and convergence rate, as well as reducing training loss, by effectively addressing the critical challenge of data non-IIDness in large-scale FL system implementations.
- Abstract(参考訳): 高度プラットフォーム局(HAPS)が支援する非地球ネットワーク(NTN)におけるフェデレートラーニング(FL)の展開には,多くの利点がある。
そのフットプリントが大きいため、多数のライン・オブ・ザ・ライト(LoS)地上クライアントとのインタラクションが容易で、それぞれがさまざまなデータセットを持ち、通信や計算能力が異なる。
多くのクライアントの存在はFLモデルの精度を高め、収束を高速化する。
しかし、これらのクライアント間のさまざまなデータセットは、広範に非独立かつ同一に分散された(非IID)データをもたらすため、大きな課題を生んでいる。
非IIDnessのデータは、トレーニングの精度を著しく低下させ、収束率を遅くする。
この問題に対処するために,歴史的トラフィックパターン,瞬時チャネル条件,計算能力,事前学習性能など,複数のユーザ固有の属性を活用する,属性に基づく新たな重み付け型クライアント選択戦略を提案する。
これらの属性をFLラウンド毎のユーザ毎の複合スコアに組み合わせ、FLクライアントとして高いスコアを持つユーザを選択することにより、より均一で代表的なデータ分布を保証し、非IIDデータの悪影響を効果的に軽減する。
シミュレーション結果は,大規模FLシステム実装におけるデータ非IID性の重要な課題を効果的に解決することにより,FLモデルの精度向上と収束率の向上,トレーニング損失の低減におけるクライアント選択戦略の有効性を裏付けるものである。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Seamless Integration: Sampling Strategies in Federated Learning Systems [0.0]
フェデレートラーニング(Federated Learning, FL)は、機械学習の分野におけるパラダイムシフトである。
新しいクライアントのシームレスな統合はFLシステムの維持と性能向上に不可欠である。
本稿では,システムのスケーラビリティと安定性を確保するための効果的なクライアント選択戦略とソリューションについて概説する。
論文 参考訳(メタデータ) (2024-08-18T17:16:49Z) - Efficient Model Compression for Hierarchical Federated Learning [10.37403547348343]
フェデレートラーニング(FL)は、分散ラーニングシステム内のプライバシを保護する能力のために、大きな注目を集めている。
本稿では,クラスタ化FLとモデル圧縮の利点を統合した新しい階層型FLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-27T12:17:47Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
フェデレートラーニング(FL)がIoT(Internet of Things)で大人気
FLrceは、関係ベースのクライアント選択と早期停止戦略を備えた効率的なFLフレームワークである。
その結果,既存のFLフレームワークと比較してFLrceは計算効率を少なくとも30%,通信効率を43%向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-15T10:13:44Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するためのゲーム理論のフレームワークであるFL Gamesを提案する。
論文 参考訳(メタデータ) (2022-05-23T07:51:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。