Fermi polaron in atom-ion hybrid systems
- URL: http://arxiv.org/abs/2401.05324v2
- Date: Tue, 03 Dec 2024 09:36:06 GMT
- Title: Fermi polaron in atom-ion hybrid systems
- Authors: Renato Pessoa, S. A Vitiello, L. A Peña Ardila,
- Abstract summary: Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials.
Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques.
- Score: 0.0
- License:
- Abstract: Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials. Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques. We compute the energy spectrum, residue, effective mass, and structural properties. Significant deviations from field-theory prediction occur in the strong coupling regime due to large density inhomogeneities around the ion. We observe a smooth polaron-molecule transition in contrast with the neutral case. This study provides insights into solid-state systems like Fermi exciton polarons in thin semiconductors and quantum technologies based on atom-ion platforms.
Related papers
- Zeeman polaritons as a platform for probing Dicke physics in condensed matter [2.523996579776851]
We show that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
This finding demonstrates that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
arXiv Detail & Related papers (2024-09-25T20:28:01Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Mediated interactions between Fermi polarons and the role of impurity
quantum statistics [0.9599847639535126]
A prototypical example of a quasi-particle, a polaron, is an impurity strongly interacting with a surrounding medium.
We report the unambiguous observation of mediated interactions between Fermi polarons consisting of K impurities embedded in a Fermi sea of Li atoms.
arXiv Detail & Related papers (2023-05-08T17:50:56Z) - Polaritonic Ultrastrong Coupling: Quantum Entanglement in Ground State [0.0]
We study the ultrastrong coupling between the elementary excitations of matter and microcavity modes.
The amount of quantum entanglement in the ground state is quite significant in the ultrastrong coupling regime.
arXiv Detail & Related papers (2023-04-03T01:58:23Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Ionic polaron in a Bose-Einstein condensate [0.0]
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects.
We show that even in a relatively simple setup the competition of length scales gives rise to a highly correlated state.
Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
arXiv Detail & Related papers (2020-05-25T11:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.