論文の概要: ANALYTiC: Understanding Decision Boundaries and Dimensionality Reduction
in Machine Learning
- arxiv url: http://arxiv.org/abs/2401.05418v1
- Date: Fri, 29 Dec 2023 16:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 08:20:54.473978
- Title: ANALYTiC: Understanding Decision Boundaries and Dimensionality Reduction
in Machine Learning
- Title(参考訳): ANALYTiC:機械学習における決定境界と次元化の理解
- Authors: Salman Haidri
- Abstract要約: ANALYTiCは、ラベル付きデータの集合から学習することで、アクティブな学習を使用して、軌跡からのセマンティックアノテーションを推論する。
この研究は、運動データ分析の文脈における機械学習と視覚的手法のより広範な統合に向けた足掛かりとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advent of compact, handheld devices has given us a pool of tracked
movement data that could be used to infer trends and patterns that can be made
to use. With this flooding of various trajectory data of animals, humans,
vehicles, etc., the idea of ANALYTiC originated, using active learning to infer
semantic annotations from the trajectories by learning from sets of labeled
data. This study explores the application of dimensionality reduction and
decision boundaries in combination with the already present active learning,
highlighting patterns and clusters in data. We test these features with three
different trajectory datasets with objective of exploiting the the already
labeled data and enhance their interpretability. Our experimental analysis
exemplifies the potential of these combined methodologies in improving the
efficiency and accuracy of trajectory labeling. This study serves as a
stepping-stone towards the broader integration of machine learning and visual
methods in context of movement data analysis.
- Abstract(参考訳): コンパクトでハンドヘルドなデバイスが登場したことで、追跡された動きデータのプールができ、それを使ってトレンドやパターンを推測できるようになりました。
動物、人間、車両等の様々な軌跡データの洪水により、ANALYTiCのアイデアは、ラベル付きデータの集合から学習することで、軌跡から意味的アノテーションを推論するアクティブラーニングによって生まれた。
本研究は,データ中のパターンやクラスタを強調表示し,現在あるアクティブラーニングと組み合わせて,次元削減と決定境界の適用について検討する。
これらの特徴を3つの異なる軌道データセットでテストし,ラベル付きデータの活用と解釈性の向上を目標とした。
実験により,これらの組み合わせ手法がトラジェクティブラベリングの効率と精度を向上させる可能性を実証した。
この研究は、運動データ分析の文脈における機械学習と視覚的手法のより広範な統合に向けた足掛かりとなる。
関連論文リスト
- You are out of context! [0.0]
新しいデータは、モデルによって学習された幾何学的関係を伸ばしたり、圧縮したり、ねじったりする力として振る舞うことができる。
本稿では,ベクトル空間表現における「変形」の概念に基づく機械学習モデルのための新しいドリフト検出手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T10:17:43Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Enhancing Explainability in Mobility Data Science through a combination
of methods [0.08192907805418582]
本稿では,重要なXAI技法を調和させる包括的フレームワークを提案する。
LIME Interpretable Model-a-gnostic Explanations, SHAP, Saliency Map, attention mechanism, direct trajectory Visualization, and Permutation Feature (PFI)
本研究の枠組みを検証するため,様々な利用者の嗜好や受容度を評価する調査を行った。
論文 参考訳(メタデータ) (2023-12-01T07:09:21Z) - Unsupervised Semantic Segmentation Through Depth-Guided Feature Correlation and Sampling [14.88236554564287]
本研究では,シーンの構造に関する情報を学習プロセスに組み込むことにより,教師なし学習の進歩を構築する。
本研究では,(1)特徴マップと深度マップを空間的に相関させて深度-特徴相関を学習し,シーンの構造に関する知識を誘導する。
次に,シーンの深度情報に対する3次元サンプリング技術を利用して,より効果的に特徴を抽出するために,最遠点サンプリングを実装した。
論文 参考訳(メタデータ) (2023-09-21T11:47:01Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - Enhancing ensemble learning and transfer learning in multimodal data
analysis by adaptive dimensionality reduction [10.646114896709717]
マルチモーダルデータ分析では、すべての観測が同じレベルの信頼性や情報品質を示すわけではない。
この問題を克服するために,次元削減のための適応的アプローチを提案する。
多様な研究分野で得られたマルチモーダルデータセットのアプローチをテストします。
論文 参考訳(メタデータ) (2021-05-08T11:53:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。